Annals of Biomedical Engineering

, Volume 18, Issue 3, pp 263–283 | Cite as

Computer simulation of the mechanically-assisted failing canine circulation

  • Ofer Barnea
  • Thomas W. Moore
  • Dov Jaron
Article

Abstract

A model of the cardiovascular system is presented. The model includes representations of the left and right ventricles, a nonlinear multielement model of the aorta and its main branches, and lumped models of the systemic veins and the pulmonary circulation. A simulation of the intra-aortic balloon pump and representations of physiological compensatory mechanisms are also incorporated in the model. Parameters of the left ventricular model were set to simulate either the normal or failing canine circulation. Pressure and flow waveforms throughout the circulation as well as ventricular pressure and volume were calculated for the normal, failing, and assisted failing circulation. Cardiac oxygen supply and consumption were calculated from the model. They were used as direct indices of cardiac energy supply and utilization to assess the effects of cardiac assistance.

Keywords

Model simulation Cardiovascular Cardiac assist Intra-aortic balloon Energy balance 

Nomenclature

Am

vessel cross-sectional area atm mmHg

E

ventricular pressure-volume ratio

Emax

maximum value ofE

En

normalizedE function

Ew

vessel wall elastance

P

blood pressure

PAV0

unperturbed mean aortic root pressure

PAV

mean aortic root pressure

Pim

intramyocardial pressure

PLV

left ventricular pressure

PVL

pressure across aortic valve

PV

systemic venous blood pressure

PVA

pressure-volume area

PW

transmural pressure

Q

flow

QLV

left ventricular flow

Qr

net flow into a vessel segment

QVL

flow into aortic valve leaflets

rb

radius of a balloon segment

rn

radius of a vessel segment

TCF

total coronary flow per beat

tED

time of end diastole

tES

time of end systole

tmax

time whenE equalsEmax

tn

normalized time

VED

end diastolic ventricular pressure

VOa

oxygen availability per beat

VOc

oxygen consumption per beat

Vs

venous volume shift

VVL

aortic valve volume

η

blood viscosity

ρ

blood density

τ

time constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman, P.L.; Dittmer, D.S. Respiration and circulation Bethesda, Maryland: Federation of American Societies for Experimental Biology; 1971.Google Scholar
  2. 2.
    Appleby, T. Analog modeling of the coronary circulation to predict left ventricular myocardial perfusion dynamics. M.S. thesis; Drexel University; Philadelphia; 1986.Google Scholar
  3. 3.
    Atabek, H.B. Blood flow and pulse propagation in arteries. In: Patel, D.J.; Vaishnav, R.N., eds. Basic hemodynamics and its role in disease processes. Baltimore; Baltimore University Park Press; 1980: p. 344.Google Scholar
  4. 4.
    Attinger, E.O.; Sagawara, H.; Navarro, A.; Riccetto, A.; Martin, R. Pressure-flow relations in dog arteries. Cir. Res. 19:230; 1966.Google Scholar
  5. 5.
    Barnea, O. Cardiovascular dynamics and the intra-aortic balloon pump: optimization based on cardiac oxygen balance. Ph.D. Dissertation; Drexel University; Philadelphia; 1987.Google Scholar
  6. 6.
    Bergel, D.H. Arterial viscoelasticity. In: Attinger, E.O., ed. Pulsatile blood flow. New York: McGraw-Hill; 1964.Google Scholar
  7. 7.
    Beyar, R.; Seideman, S. A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ. Res. 55:358; 1984.PubMedGoogle Scholar
  8. 8.
    Diamond, G.; Forrester, J.S.; Hargis, J.; Parmley, W.W.; Danzig, R.; Swan, H.J.C. Diastolic pressure-volume relationship in the canine left ventricle. Circ. Res. 19:267; 1971.Google Scholar
  9. 9.
    Feola, M.; Haiderer, O.; Kennedy, J.H. Intra-aortic balloon pumping at different levels of experimental acute left ventricular failure. Chest 59:68–76; 1971.PubMedGoogle Scholar
  10. 10.
    Finkelstein, S.M.; Cohn, J.N.; Collins, V.R.; Carlyle, P.F.; Shelley, W.J. Vascular hemodynamic impedance in congestive heart failure. Am. J. Cardiol. 55:423–427; 1985.CrossRefPubMedGoogle Scholar
  11. 11.
    Greene, A.S.; Shoukas, A.A. Changes in canine function and venous return curves by the carotid baroreflex. Am. J. Physiol. 251:H288; 1986.PubMedGoogle Scholar
  12. 12.
    He, P. Optimization of cardiac assist devices: theoretical and experimental studies of intra-aortic balloon pumping. Ph.D. Thesis; Drexel University; Philadelphia; 1984.Google Scholar
  13. 13.
    He, P.; Dubin, S.E.; Moore, T.W.; Jaron, D. Guidelines for optimal control of intra-aortic balloon pumping: experimental studies. ASAIO 7(4):172–179; 1984.Google Scholar
  14. 14.
    Jaron, D.; Moore, T.W.; He, P. Theoretical considerations regarding the optimization of cardiac assistance by intra-aortic balloon pumping. IEEE Trans. Biom. Eng. 30:177–186; 1983.Google Scholar
  15. 15.
    Jelinek, J. Counterpulsation: hemodynamics and design analysis of counterpulsation systems. Adv. Cardiovasc. Physics 5:72–101; 1983.Google Scholar
  16. 16.
    Jelinek, J. Hemodynamics of counterpulsation: the study of a lumped-parameter computer model. J. Biomechanics 5:511; 1972.Google Scholar
  17. 17.
    Kass, D.A.; Maughan, W.L. From ‘Emax’ to pressure-volume relations: a broader view. Circulation 77:1203; 1988.PubMedGoogle Scholar
  18. 18.
    Kuklinski, W.S.; Jaron, D.; Ohley, W.J.; Greenall Jr., R.K. The intra-aortic balloon pump: a nonlinear digital computer model. Transactions of the ASME 106:220; 1980.Google Scholar
  19. 19.
    Laird, J.D.; Madras, P.N.; Jones, R.T.; Kantrowitz, A.R.; Kothari, M.L.; Buckley, M.J.; Austen, W.G. Theoretical and experimental analysis of the intra-aortic balloon pump. Trans. ASAIO 14:338; 1968.Google Scholar
  20. 20.
    Latson, T.W.; Hunter, W.C.; Burkhoff, D.; Sagawa, K. Time sequential prediction of ventricular-vascular interactions. Am. J. Physiol. 251:H1341; 1986.PubMedGoogle Scholar
  21. 21.
    Leaning, M.S.; Pullen, H.E.; Carson, E.R.; Finkelstein, L. Modelling a complex biological system: the human cardiovascular system. Trans. Inst. MC5, No. 2, Apr–Jun; 1983.Google Scholar
  22. 22.
    Lefemine, A.A.; Low; Cohen, M.L.; Lunzer, S.; Harken, D.E. Assisted circulation. III. The effect of synchronized arterial counterpulsation on myocardial oxygen consumption and coronary flow. Am. Heart J. 64:789; 1962.PubMedGoogle Scholar
  23. 23.
    Ling, S.C.; Atabek, H.B.; Letzing, W.G.; Patel, D.J. Nonlinear analysis of aortic flow in living dogs. Circ. Res. 33:198; 1973.PubMedGoogle Scholar
  24. 24.
    Maughan, W.L.; Shoukas, A.A.; Sagawa, K.; Weisfeldt, M.L. Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44:309; 1979.PubMedGoogle Scholar
  25. 25.
    McDonald, D.A. Blood flow in arteries. London: Edward Arnold; 1974.Google Scholar
  26. 26.
    Milnor, W.R. Hemodynamics. Baltimore: Williams & Wilkins; 1982.Google Scholar
  27. 27.
    Murgo, J.P.; Westerhof, N. Input impedance of the pulmonary arterial system in normal man. Circ. Res. 54:666, 1984.PubMedGoogle Scholar
  28. 28.
    Neiderer, P.; Schilt, W. Experimental and theoretical modelling of intra-aortic balloon pump operation. Med. & Biol. Eng. & Comput. 26:167–174; 1988.Google Scholar
  29. 29.
    Nerz, A.R.; Myerowitz, P.D.; Blackshear Jr., P.L. A simulation of the dynamics of counterpulsation. J. Biomech. Eng. 101:105; 1980.Google Scholar
  30. 30.
    Nichols, W.W.; McDonald, D.A. Wave velocity in the proximal aorta. Med. Biol. Eng. 10:327; 1972.PubMedGoogle Scholar
  31. 31.
    Nozawa, T.; Yasumura, Y.; Futaki, S.; Tanaka, N.; Igarashi, Y.; Goto, Y.; Suga, H. Relation between oxygen consumption and pressure-volume area ofin situ dog heart. Am. J. Physiol. 253 (Heart Circ. Physiol. 22):H31-H40; 1987.PubMedGoogle Scholar
  32. 32.
    Noordergraaf, A. Circulatory system dynamics. New York: Academic Press; 1978: pp. 125–127.Google Scholar
  33. 33.
    Permutt, S.; Bromberger-Barnea, B.; Bane, H.N. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med. Thorac. 19:239–260; 1962.PubMedGoogle Scholar
  34. 34.
    Puri, N.N.; Li, J.K.-J.; Fich, S.; Welkowitz, W. Control system for circulatory assist devices: determination of suitable control variables. Trans. Am. Soc. Art. Intern. Organs 28:127; 1982.Google Scholar
  35. 35.
    Shroff, S.G.; Nanicki, J.S.; Weber, K.T. Evidence and quantitation of left ventricular systolic resistance. Am. J. Physiol. 249:H358; 1985.PubMedGoogle Scholar
  36. 36.
    Shroff, S.G.; Janicki, J.S.; Weber, K.T. Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am. J. Physiol. 245:H110; 1983.PubMedGoogle Scholar
  37. 37.
    Suga, H.; Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117; 1974.PubMedGoogle Scholar
  38. 38.
    Suga, H.; Yasamura, Y.; Nozawa, T.; Futaki, S.; Igarashi, Y.; Goto, Y. Prospective prediction of O2 consumpton from pressure-volume area in dog hearts. Am. J. Physiol. 252:H1258-H1264; 1987.PubMedGoogle Scholar
  39. 39.
    Sunagawa, K.; Maughan, W.L.; Sagawa, K. Effect of regional ischemia on the left ventricular endsystolic pressure-volume relationship of isolated canine hearts. Circ. Res. 52:170; 1983.PubMedGoogle Scholar
  40. 40.
    Tanaka, T.; Arakawa, M.; Suzuki, T.; Gotoh, M.; Miyamoto, H.; Hirakawa, S. Compliance of human pulmonary “venous” system estimated from pulmonary artery wedge pressure tracings. Japanese Circulation Journal 50;127: 1986.PubMedGoogle Scholar
  41. 41.
    Thurbikar, M.; Piepgrass, W.C.; Bosher, L.P.; Nolan, S.P. The elastic modulus of canine aortic valve leafletsin vivo andin vitro. Circ. Res. 47:792; 1980.Google Scholar
  42. 42.
    Weber, K.T.; Janicki, J.S. The metabolic demand and oxygen supply of the heart: physiologic and clinical considerations. Am. J. Cardiol. 44:722; 1979.PubMedGoogle Scholar

Copyright information

© Pergamon Press plc 1990

Authors and Affiliations

  • Ofer Barnea
    • 1
  • Thomas W. Moore
    • 2
  • Dov Jaron
    • 2
  1. 1.Biomedical Engineering Program Department of Interdisciplinary Studies School of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Biomedical Engineering and Science InstituteDrexel UniversityPhiladelphia

Personalised recommendations