The 1-Hz fluorometer: A new approach to fast and sensitive long-term studies of active chlorophyll and environmental influences

Abstract

A new instrument for environmental monitoring, called at 1-Hz fluorometer, provides two modes of application. First, it enables a quantitative determination of algal concentrations down to 20 ng/l. Second, it can be used as a biosensor for changes in environmental conditions. The distinction between the signals from living chlorophyll-containing algae and other fluorescent material is achieved by using two modulated light-sources resulting in a mean fluence rate of 200 μE. The measuring light induces changes in chlorophyll fluorescence (yield) with a frequency of 1 kHz, and the actinic light modulates the redox state of the quenchers of PS II with a frequency of 1 Hz. This leads to a modulation of the yield which is detected by two phase-sensitive rectifiers (double correlation). Measurements from different sites in a river, and in the Baltic and North Seas, show that correction by the built-in simultaneously-measured attenuation is necessary in order to obtain values which are identical with those determined by a photometric analysis (Uvikon 860). This applies if the transmission becomes less than about 95%. Suspensions ofDunaliella salina exposed to ammonia and phosphate were used for illustrating the usage for environmental monitoring. It is shown that this system can measure changes in the chlorophyll fluorescence of living algae caused by changes in concentration of ammonia down to 1 μg/l and of phosphate down to 10 μg/l.

Literature Cited

  1. Bilger, W., Björkman, O. & Thayer, S. S., 1989. Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. — Pl. Physiol., Lancaster91, 542–551.

    CAS  Google Scholar 

  2. Dau, H. & Canaani, O., 1992. Short-term adaptation of higher plants to changing light intensities and evidence for the involvement of phosphorylation of the light harvesting chlorophyll a/b protein complex of photosystem II. — Photochem. Photobiol.55, 873–885.

    CAS  Google Scholar 

  3. Dau, H. & Hansen, U.-P., 1989. Studies on the adaption of intact, leaves to changing light intensities by a kinetic analysis of chlorophyll-fluorescence and of oxygen evolution as measured by the photoacoustic signal. — Photosynth. Res.20, 59–83.

    Article  CAS  Google Scholar 

  4. Dau, H. & Hansen, U.-P., 1990. A study of the energy dependent quenching of chlorophyll-fluorescence by means of photoacoustic measurements. — Photosynth. Res.25, 269–278.

    Article  CAS  Google Scholar 

  5. Demmig, B. & Winter, K., 1988. Characterisation of three components of non-photochemical fluorescence quenching and their response to photoinhibition. — Aust. J. Pl. Physiol.15, 163–177.

    Google Scholar 

  6. Genty, B., Briantais, J.-M., & Baker, N. R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta999, 87–92.

    Google Scholar 

  7. Guillard, R. R. L. & Ryther, J. H., 1962. Studies on marine planktonic diatoms. I.Cyclotella nana Hustedt andDetonula confervacea (Cleve) Gran. — Can. J. Microbiol.8, 229–239.

    CAS  PubMed  Google Scholar 

  8. Hansen, U.-P., Dau, H., Brüning, B., Fritsch, T. & Moldaenke, C., 1991. Linear analysis applied to the comparative study of the I-D-P phase chlorophyll fluorescence as induced by actinic PS-II light, PS-I light and changes in CO2-concentration. — Photosynth. Res.28, 119–130.

    Article  CAS  Google Scholar 

  9. Hansen, U.-P., Moldaenke, C., Tabrizi, H. & Ramm, D., 1993. The effect of transthylakoid proton uptake on cytosolic pH and the imbalance of ATP and NAPDH/H+ production as measured by CO2- and light-induced depolarisation of the plasmalemma. — Pl. Cell Physiol.34, 681–695.

    CAS  Google Scholar 

  10. Horton, P., Ruban, A. V., Rees, D., Pascal, A. A., Noctor, G. & Young, A. J., 1991. Control of light-harvesting function of chloroplast membranes by aggregation of the chlorophyll-protein complex. — FEBS Lett.292, 1–4.

    Article  CAS  PubMed  Google Scholar 

  11. Jeffrey, S. W. & Humphrey, G. F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. — Biochem. Physiol. Pflanz.167, 191–194.

    CAS  Google Scholar 

  12. Pasda, G., Moldaenke, C., Otten, F., Hansen, U. P. & Diepenbrock, W., 1992. Die Chlorophyll-Fluoreszenz-Analyse im Sekundenbereich — ein neuer Ansatz zur Messung von Kühlestreß bei Mais (Zea mays L.). — Mitt. Ges. Pflanzenwiss.5, 275–278.

    Google Scholar 

  13. Schreiber, U. & Neubauer, C., 1990. O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll-fluorescence. — Photosynth. Res.25, 279–293.

    Article  CAS  Google Scholar 

  14. Schreiber, U. & Schliwa, U. 1987. A solid-state, portable instrument for measurement of chlorophyll luminescence induction in plants — Photosynth. Res.11, 173–182.

    Article  Google Scholar 

  15. Schreiber, U., Schliwa, U. & Bilger, W., 1986. Continuous recording of photochemical and non-photochemical chlorophyll-fluorescence quenching with a new type of modulation fluorometer. —Photosynth. Res.10, 51–62.

    Article  CAS  Google Scholar 

  16. Schroeter, B., Kappen, L. & Moldaenke, C., 1991. Continuousin situ recording of the photosynthetic activity of antarctic lichens: established methods and a new approach. — Lichenologist23, 253–265.

    Google Scholar 

  17. Vanselow, K. H., 1993. The effect of N-nutrients on the acceptor pool of PS I and thylakoid energization as measured by chlorophyll fluorescence ofDunaliella salina. — J. exp. Bot.44, 1331–1340.

    CAS  Google Scholar 

  18. Vanselow, K. H., Dau, H. & Hansen, U.-P., 1988. Indication of transthylakoid, proton-fluxes inAegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering. — Planta176, 351–361.

    Article  CAS  Google Scholar 

  19. Vanselow, K.-H. & Hansen, U. P., 1989. Rapid effect of light on the K+-channel in the plasmalemma ofNitella. — J. Membrane Biol.,110, 175–187.

    Article  CAS  Google Scholar 

  20. Vanselow, K. H., Hansen, U.-P., Ruesch, B. & Moldaenke, Ch., 1992. Anwendung von Rauschanalyse und Doppelkorrelator in der, Öko-Technik. In: 7. Symposium Maritime Elektronik. Ed. by H. Albrecht & O. Wild. Univ. Rostock, Rostock, 44–47.

    Google Scholar 

  21. Vanselow, K. H., Kolbowski, J. & Hansen, U. P., 1989. Analysis of chlorophyll-fluorescence by means of noisy light. — J. exp. Bot.40, 247–256.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moldaenke, C., Vanselow, K.H. & Hansen, U.-. The 1-Hz fluorometer: A new approach to fast and sensitive long-term studies of active chlorophyll and environmental influences. Helgolander Meeresunters 49, 785–796 (1995). https://doi.org/10.1007/BF02368401

Download citation

Keywords

  • Waste Water
  • Chlorophyll
  • Attenuation
  • Water Pollution
  • Redox State