Advertisement

Helgoländer Meeresuntersuchungen

, Volume 49, Issue 1–4, pp 189–199 | Cite as

FDA hydrolysis and resazurin reduction as a measure of microbial activity in sediments from the south-east Atlantic

  • R. Gumprecht
  • H. Gerlach
  • A. Nehrkorn
Marine Ecology: Microbial Processes

Abstract

Esterase and dehydrogenase activities were determined in depth profiles of sediments from the south-east Atlantic using fluorometric methods. The sensitivity of both methods was sufficient to record enzymatic activities in deep-sea clay and foraminiferous sand. Depending on water depth and location, significant differences between the depth profiles of enzyme activities could be determined. They appear to be dependent on the organic-matter input from sedimentation. Conclusions about the mode of microbial degradation of organic matter (oxic, anoxic, type of electron acceptors) are possible, using suitable chemical parameters. Under oxic conditions (Eh>200 mv) it was possible (using the method developed for dehydrogenase activities) to determine depth profiles similar to those of the esterase activities. Under suboxic or anoxic conditions, an appropriate separation between biological (dehydrogenase activity) and chemical resazurin reduction was not possible.

Keywords

Clay Sedimentation Microbial Degradation Water Depth Microbial Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Alef, K., 1991. Methodenhandbuch Bodenmikrobiologie — Aktivitäten, Biomasse, Differenzierung. Ecomed, Landsberg, 284 pp.Google Scholar
  2. Berger, W. H., 1989. Global maps of ocean productivity. In: Productivity of the ocean: present and past. Ed. by W. H. Berger, V. S. Smetacek & G. Wefer. Wiley, Chichester, 429–455.Google Scholar
  3. Burns, R. G., 1982. Enzyme activity in soil-location and a possible role in microbial ecology. — Soil Biol. Biochem.14, 423–427.CrossRefGoogle Scholar
  4. Chrzanowski, T. H., Crotty, R. D., Hubbard, J. G. & Welch, R. P., 1984. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. — Microb. Ecol.10, 179–185.CrossRefGoogle Scholar
  5. Ewald, M., Herrmann, K. & Weidmann, M., 1987. Kurzzeittest für die Bestimmung der Dehydrogenaseaktivität von Belebtschlämmen. — Vom Wasser68, 165–175.Google Scholar
  6. Ewald, M., 1989. Vergleich zweier Methoden zur Bestimmung der Dehydrogenasenaktivität von Belebtschlämmen. — Z. Wasser-Abwasser-Forsch.22, 28–32.Google Scholar
  7. Guilbault, G. G. & Kramer, D. N., 1964. New direct fluorometric method for measuring dehydrogenase activity. — Analyt. Chem.36, 2497–2498.Google Scholar
  8. Guilbault, G. G. & Kramer, D. N., 1965. Fluorometric procedure for measuring the activity of dehydrogenases. — Analyt. Chem.37, 1219–1221.Google Scholar
  9. Guilbault, G. G. & Kramer, D. N., 1966. Lipolysis of fluorescein and eosin esters — kinetics of hydrolysis. — Analyt. Biochem.14, 28–40.Google Scholar
  10. Holzapfel-Pschorn, A., Obst, U. & Haberer, K., 1987. Sensitive methods for the determining of microbial activities in water samples using fluorigenic substrates. — Fresenius Z. analyt. Chem.327, 521–523.Google Scholar
  11. Köster, M., Jensen, P. & Meyer-Reil, L.-A., 1991. Hydrolytic activities of organisms and biogenic structures in deep-sea sediments. In: Microbial enzymes in aquatic environments. Ed. by R. J. Chrost. Springer, New York, 298–310.Google Scholar
  12. Köster, M., 1992. Mikrobieller Abbau von organischem Material an Grenzzonen — erläutert an Beispielen von Sedimenten der Nordsee und des Europäischen Nordmeeres. Diss., Univ. Kiel, 148 pp.Google Scholar
  13. Kuemmerlin, R., 1982. Technical note: resazurin test for microbiological control of deep-frozen shrimps. — J. Food Technol.17, 513–515.Google Scholar
  14. Ladd, J. N., 1978. Origin and range of enzymes in soil. In: Soil enzymes. Ed. by R. G. Burns. Acad. Press, London, 51–96.Google Scholar
  15. Liu, D., 1981. A rapid biochemical test for measuring chemical toxicity. — Bull. environ. Contam. Toxicol.26, 145–149.PubMedGoogle Scholar
  16. Liu, D., 1983. Resazurin reduction method for activated sludge process control. — Environ. Sci. Technol.17, 407–411.CrossRefGoogle Scholar
  17. Liu, D. & Strachan, W. M. J., 1979. Characterization of microbial activity in sediment by resazurin reduction. — Ergebn. Limnol.12, 24–31.Google Scholar
  18. Meyer-Reil, L.-A., 1991. Ecological aspects of enzymatic activity in marine sediments. In: Microbial enzymes in aquatic environments. Ed. by R. J. Chrost. Springer, New York, 84–95.Google Scholar
  19. Oberhänsli, H., 1991. Upwelling signals at the northeastern Walvis Ridge during the past 500,000 years. — Paleoceanogr.6, 53–71.Google Scholar
  20. Peroni C. & Rossi, G., 1986. Determination of microbial activity in marine sediments by resazurin reduction. — Chem. Ecol.2, 205–218.Google Scholar
  21. Reddy, Y. M., Karunasagar, I., Karunasagar, I. & Udupa, K. S., 1990. The resazurin test for estimating bacteriological quality of shrimps. — Asian Fish. Sci.3, 263–267.Google Scholar
  22. Schnürer, J. & Rosswall, T., 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. — Appl. environ. Microbiol.43, 1256–1261.PubMedGoogle Scholar
  23. Skujins, J., 1975. Extracellular enzymes in soil. — Crit. Rev. Microbiol.4, 383–421.Google Scholar
  24. Skujins, J., 1978. History of abiotic soil enzyme research. In: Soil enzymes. Ed. by R. G. Burns. Acad. Press, London, 1–49.Google Scholar
  25. Swisher, R. & Carroll, G. C., 1980. Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces. — Microb. Ecol.6, 217–226.CrossRefGoogle Scholar
  26. Thalmann, A., 1967. Über die mikrobielle Aktivität und ihre Beziehungen zu Fruchtbarkeitsmerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenaseaktivität (TTC-Reduktion). Diss. Univ. Gießen, 227 pp.Google Scholar
  27. Wefer, G. & Schulz, H. D., 1993. Ostatlantik 91/92 — Expedition, Reise Nr. 20, M 20/1 und M 20/2, 18. November 1991 — 3. Februar 1992. — Meteor-Ber.93–2, 1–248.Google Scholar
  28. Wetzel, A., 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. — Meteor Forsch.-Ergebn. (C)34, 1–47.Google Scholar

Copyright information

© Biologische Anstalt Helgiland 1995

Authors and Affiliations

  • R. Gumprecht
    • 1
  • H. Gerlach
    • 1
  • A. Nehrkorn
    • 1
  1. 1.Abt. MikrobiologieUniversität BremenBremenGermany

Personalised recommendations