Helgoländer Meeresuntersuchungen

, Volume 49, Issue 1–4, pp 3–18 | Cite as

Science and organization in open-sea research: The plankton

  • K. Banse
Celebration Speech


Looking forward on this occasion, rather than reviewing the past 100 years, it appears that 100 years hence, we will have to manage the environment worldwide like a global garden. How will the ecological knowledge necessary for sound management be acquired? Drawing especially on concepts about the plankton of the open North Sea and on unresolved issues of understanding, questions will be raised about research direction and organization that will need to be answered long before the next 100 years have passed.


Waste Water Water Management Water Pollution Research Direction Unresolved Issue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aebischer, N. J., Coulson, J. C. & Colebrook, J. M., 1990. Parallel long-term trends across four marine trophic levels and weather.—Nature, Lond.347, 753–755.CrossRefGoogle Scholar
  2. Bailey, R. S. & Steele, J. H., 1992. North Sea herring fluctuations. In: Climate variability, climate change, and fisheries. Ed. by M. H. Glantz. Cambridge Univ. Press, London, 211–230.Google Scholar
  3. Belsky, M. H., 1989. Development of an ecosystem management regime for large marine ecosystems. In: Biomass yields and geography of large marine ecosystems. Ed. by K. Sherman & L. M. Alexander. Am. Ass. Adv. Aci., Washington DC 443–459.Google Scholar
  4. Bückmann, A. (Hrsg.), 1959. Die Wiedereröffnung der Biologischen Anstalt Helgoland 1959.—Helgoländer wiss. Meeresunters.7, 1–50.Google Scholar
  5. Callahan, J. T., 1991. Institutional structures. In: Comparative analyses of ecosystems — patterns, mechanisms, and theories. Ed. by J. Cole, G. Lovett & S. Findlay. Springer. New York, 343–345.Google Scholar
  6. Carpenter, S. R., Frost, T. M., Kitchell, J. F., Kratz, T. K., Schindler, D. W., Shearer, J., Sprules, W. G., Vanni, M. J. & Zimmerman, A. P., 1991. Patterns of primary production and herbivory in 25 North American lake ecosystems. In: Comparative analyses of ecosystems — patterns, mechanisms, and theories. Ed. by J. Cole, G. Lovett & S. Findlay. Springer, New York, 67–96.Google Scholar
  7. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G., 1987. Oceanic phytoplankton atmospheric sulphur, cloud albedo and climate.—Nature, Lond.326, 655–661.CrossRefGoogle Scholar
  8. Colebrook, J. M., 1986. Environmental influences on long-term variability in marine plankton.—Hydrobiologia142, 309–325.CrossRefGoogle Scholar
  9. Colebrook, J. M., 1991. Continuous plankton records: from seasons to decades in the plankton of the North-east Atlantic. In: Long-term variability of pelagic fish populations and their environment. Ed. by T. Kawasaki, S. Tanaka, Y. Toba & A. Taniguchi. Pergamon Press, Tokyo, 29–45.Google Scholar
  10. Cushing, D. H., 1984. The gadoid outburst in the North Sea.—J. Cons. int. Explor. Mer.41, 159–166.Google Scholar
  11. Daan, N. & Sissenwine, M. P. (Eds.), 1991. Multispecies models relevant to management of living rescurces.—ICES mar. Sci. Symp.193, 1–358.Google Scholar
  12. DeMelo, R., France, R. & McQueen, D. J., 1992. Biomanipulation: Hit or myth?.—Limnol. Oceanogr.37, 192–207.Google Scholar
  13. Fogarty, M. J., Cohen, E. B., Michaels, W. L. & Morse, W. M., 1991. Predation and the regulation of sand lance populations: an exploratory analysis.—ICES mar. Sci. Symp.193, 120–124.Google Scholar
  14. Fransz, H. G., Mommaerts, J. P. & Radach, G., 1991. Ecological modelling of the North Sea.—Neth. J. Sea Res.28, 67–140.Google Scholar
  15. Garçon, V. C., Thomas, F., Wong, C. S. & Munster, J. F., 1992. Gaining insight into the seasonal variability of CO2 at Ocean Station P using an upper ocean model.—Deep-Sea Res.39, 921–938.CrossRefGoogle Scholar
  16. Geus, J. G. A. & Querner, H., 1990. Deutsche Zoologische Gesellschaft 1890–1990. Fischer, Stuttgart, 187 pp.Google Scholar
  17. Hardy, A. C., 1924. The herring in relation to its animate environment. 1.: The food and feeding habits of the herring with special reference to the east coast of England.—Fishery Invest., Lond. (Ser. 2)7(3), 1–53.Google Scholar
  18. Hardy, A. C., 1959. The open sea: its natural history. II: Fish and fisheries. Collins, London, 322 pp.Google Scholar
  19. Harris, G. P., 1985. The answer lies in the nesting behaviour.—Freshwater Biol.15, 375–380.Google Scholar
  20. Heuss, Th., 1940. Anton Dohrn. 2. Aufl. Wunderlich, Tubingen, 448 pp.Google Scholar
  21. Kawasaki, T., 1991. Long-term variability in the pelagic fish populations. In: Long-term variability of pelagic fish populations and their environment. Ed. by T. Kawasaki, S. Tanaka, Y. Toba & A. Taniguchi. Pergamon Press, Tokyo, 47–60.Google Scholar
  22. Koslow, J. A., 1983. Zooplankton community structure in the North Sea and Northeast Atlantic: development and test of a biological model.—Can. J. Fish. aquat. Sci.40, 1912–1924.Google Scholar
  23. Landry, M. R., 1977. A review of important concepts in the trophic organization of pelagic ecosystems.—Helgoländer wiss. Meeresunters.30, 8–17.CrossRefGoogle Scholar
  24. Likens, G. E., 1992. The ecosystem approach: its use and abuse. Ecology Institute. Oldendorf, 166 pp.Google Scholar
  25. Longhurst, A. R., 1991. Role of the marine biosphere in the global carbon cycle.—Limnol. Oceanogr.36, 1507–1526.Google Scholar
  26. Malin, G., Turner, S. M. & Liss, P. S., 1992. Sulfur: the plankton/climate, connection.—J. Phycol.28, 590–597.CrossRefGoogle Scholar
  27. Olsson, P., Granéli, E., Carlsson, P. & Abreu, P., 1992. Structuring of a postspring phytoplankton community manipulation of trophic interactions.—J. exp. mar. Biol. Ecol.158, 249–266.CrossRefGoogle Scholar
  28. Platt, J. R., 1964. Strong inference.—Science, N. Y.146, 347–353.Google Scholar
  29. Roff, J. C., Middlebrook, K. & Evans, F., 1988. Long-term variability in North Sea zooplankton off the Northumberland coast: productivity of small copepods and analysis of trophic interactions.—J. mar. biol. Ass. U. K.68, 143–164.Google Scholar
  30. Rothschild, B. J. (Ed.), 1988. Toward a theory on biological-physical interactions in the world oceans. Kluwer, Dordrecht, 650 pp.Google Scholar
  31. Rothschild, B. J., 1991. Multispecies interactions on Georges Bank.—ICES mar. Sci. Symp.193, 86–92.Google Scholar
  32. Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics — and if so, should we bother?—J. Plankton Res.13, 1291–1305.Google Scholar
  33. Sherman, K., Jones, C., Sullivan, L., Smith, W., Berrien, P. & Ejsymont, L., 1981. Congruent shifts in sand eel abundance in western and eastern North Atlantic ecosystems.—Nature, Lond.291, 486–489.CrossRefGoogle Scholar
  34. Steele, J. H., 1991. Ecological explanations in marine and terrestrial systems. In: Marine biology — its accomplishments and future prospects. Ed. by J. Mauchline & T. Nemoto. Elsevier, Amsterdam, 101–106.Google Scholar
  35. Steele, J. H. & Frost, B. W., 1977. The structure of plankton communities.—Phil. Trans. R. Soc. London (Ser. B),280, 485–534.Google Scholar
  36. Steele, J., Carpenter, S., Cohen, J., Dayton, P. & Ricklefs, R., 1989. Comparison of terrestrial and marine ecological systems.-Mimeogr. Report of a workshop held in Santa Fe, NM, March 1989 (Nat. Sci. Found., grant No. OCE 8814769).Google Scholar
  37. Vanni, M. J. & Findlay, D. L., 1990. Trophic cascades and phytoplankton community structure.—Ecology71, 921–937.Google Scholar
  38. Wyatt, T., 1976. Food chains in the sea. In: The ecology of the seas. Ed. by D. H. Cushing & J. J. Walsh. Saunders, Philadelphia, 341–358.Google Scholar

Copyright information

© Biologische Anstalt Helgiland 1995

Authors and Affiliations

  • K. Banse
    • 1
  1. 1.School of OceanographyUniversity of WashingtonSeattleU. S. A.

Personalised recommendations