Annals of Biomedical Engineering

, Volume 23, Issue 1, pp 48–60 | Cite as

Modeling the concentration of ethanol in the exhaled breath following pretest breathing maneuvers

  • Steven C. George
  • Albert L. Babb
  • Michael P. Hlastala
Research Articles

Abstract

A previously developed mathematical model that describes the relationship between blood alcohol (ethanol) concentration and the concentration of alcohol in the exhaled breath at end-exhalation (BrAC) has been used to quantitate the effect of pretest breathing conditios on BrAC. The model was first used to “condition” the airways with different breathing maneuvers prior to simulating a single exhalation maneuver, the maneuver used in standard breath alcohol testing. On inspiration, the alcohol in the air reaches local equilibrium with the alcohol in the bronchial capillary bed prior to entering the alveolar region. On expiration, approximately 50% of the alcohol absorbed on inspiration is desorbed back to the airways. BrAC correlates with the amount of alcohol that is desorbed to the airways. The six pretest breathing conditions and the percent change in BrAC relative to the control maneuver were: hyperventilation (−4.4%), hypoventilation (3.7%), hot-humid air (−2.9%), hot-dry air (0.66%), cold-humid air (0.13%), and cold-dry air (0.53%). The mechanism underlying these responses is not due to changes in breath temperature, but, rather to changes in the axial profile of alcohol content in the mucous lining of the airways.

Keywords

Mathematical model Soluble gas exchange Alcohol breath test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharonson, E. F., H. Menkes, G. Gurtner, D. L. Swift and D. F. Proctor. Effect of respiratory airflow rate on the removal of soluble vapors by the nose.J. Appl. Physiol. 37:654–657, 1974.PubMedGoogle Scholar
  2. 2.
    Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena, New York: John Wiley & Sons, 1960, p. 354.Google Scholar
  3. 3.
    Chilton, T. H., and A. P. Colburn. Mass transfer (absorption) coefficients: Prediction from data on heat transfer and fluid friction.Ind. Eng. Chem. 26:1183–1187, 1934.CrossRefGoogle Scholar
  4. 4.
    Dahl, A. R., M. B. Snipes, and P. Gerde. Sites for uptake of inhaled vapors in beagle dogs.Toxicol. Appl. Pharm. 109:263–275, 1991.CrossRefGoogle Scholar
  5. 5.
    Dubowski, K. M. Breath-alcohol simulators: Scientific basis and actual performance.J. Anal. Toxicol. 3:177–182, 1979.Google Scholar
  6. 6.
    George, S. C., A. L. Babb, and M. P. Hlastala. Dynamics of soluble gas exchange in the airways: III. Single exhalation breathing maneuver.J. Appl. Physiol. 75:2439–2449, 1993.PubMedGoogle Scholar
  7. 7.
    Hanna, L. M., and P. W. Scherer. Measurement of local mass transport coefficients in a cast model of the human upper respiratory tract.J. Biomech. Eng. 108:12–18, 1986.PubMedGoogle Scholar
  8. 8.
    Hildebrandt, J. Structural and mechanical aspects of respiration. In: Textbook of Physiology, edited by H. D. Patton, A. F. Fuchs, B. Hille, A. M. Scher and R. Steiner. Philadelphia: W.B. Saunders Co., 1989, Vol. 2, p. 995.Google Scholar
  9. 9.
    Hindmarsh, A. LSODE (computer program). Lawrence Livermore Laboratory, 1981.Google Scholar
  10. 10.
    Ingenito, E. P., J. Solway, E. R. McFadden, and J. M. Drazen. A quantitative study of heat transfer coefficients in the upper tracheobronchial tree of man (Abstract).Fed. Proc. 45:1020, 1986.Google Scholar
  11. 11.
    Iravani, J., and A. v., As. Mucus transport in the tracheobronchial tree of normal and bronchitic rats.Pathologe 106:81–93, 1972.Google Scholar
  12. 12.
    Jones, A. W. Effects of temperature and humidity of inhaled air on the concentration of ethanol in a man's exhaled breath.Clin. Sci. 63:441–445, 1982.PubMedGoogle Scholar
  13. 13.
    Jones, A. W. How breathing technique can influence the results of breath-alcohol analysis.Med. Sci. Law. 22:275–280, 1982.PubMedGoogle Scholar
  14. 14.
    Jones, A. W. Quantitative measurements of the alcohol concentration and the temperature of breath during a prolonged exhalation.ACTA Physiol. Scand. 114:407–412, 1982.PubMedGoogle Scholar
  15. 15.
    Jones, A. W. Determination of liquid/air partition coefficients for dilute solutions of ethanol in water, whole blood, and plasma.J. Anal. Toxicol. 7:193–197, 1983.PubMedGoogle Scholar
  16. 16.
    Luchtel, D. L. The mucous layer of the trachea and major bronchi in the rat.Scan. Elect. Micro. 2:1089–1098, 1978.Google Scholar
  17. 17.
    McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans.J. Appl. Physiol. 58:564–570, 1985.PubMedGoogle Scholar
  18. 18.
    Morris, J. B., and D. G. Cavanagh. Deposition of ethanol and acetone vapors in the upper respiratory tract of the rat.Fund. Appl. Toxicol. 6:78–88, 1986.CrossRefGoogle Scholar
  19. 19.
    Newman, W. H., and P. P. Lele. A transient heating technique for the measurement of thermal properties of perfused biological tissue.J. Biomech. Eng. 107:219–227, 1985.PubMedGoogle Scholar
  20. 20.
    Ohlsson, J., D. D. Ralph, M. A. Mandelkorn, A. L. Babb, and M. P. Hlastala. Accurate measurement of blood alcohol concentration with isothermal rebreathing.J. Stud. Alcohol. 51:6–13, 1990.PubMedGoogle Scholar
  21. 21.
    Schrikker, A. C. M., W. R. de Vries, A. Zwart, and S. C. M. Luijendijk. Uptake of highly soluble gases in the epithelium of the conducting airways.Pflugers Arch. 405:389–394, 1985.CrossRefPubMedGoogle Scholar
  22. 22.
    Solway, J., B. H. Pichurko, E. P. Ingenito, E. R. McFadden, Jr., C. H. Fanta, R. H. Ingram, Jr., and J. M. Drazen. Breathing pattern affects airway wall temperature during cold air hyperpnea in humans.Am. Rev. Resp. Dis. 132:853–857, 1985.PubMedGoogle Scholar
  23. 23.
    Tsu, M. E., A. L. Babb, E. M. Sugiyama, and M. P. Hlastala. Dynamics of soluble gas exchange in the airways: II. Effects of breathing conditions.Resp. Physiol. 83:261–276, 1991.Google Scholar
  24. 24.
    Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: I. A model study.Ann. Biomed. Eng. 16:547–571, 1988.CrossRefPubMedGoogle Scholar
  25. 25.
    Weibel, E. Morphometry of the Human Lung. New York: Springler-Verlag, 1963.Google Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • Steven C. George
    • 1
  • Albert L. Babb
    • 1
  • Michael P. Hlastala
    • 2
    • 3
  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleU.S.A.
  2. 2.Department of MedicineUniversity of WashingtonSeattleU.S.A.
  3. 3.Department of Physiology and BiophysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations