Annals of Biomedical Engineering

, Volume 22, Issue 6, pp 550–567 | Cite as

Contractile-based model interpretation of pressure-volume dynamics in the constantly activated (Ba2+) isolated heart

  • Kenneth B. Campbell
  • Luke W. Campbell
  • J. Edson Pinto
  • Thomas D. Burton
Research Articles


A contractile-based model was constructed to represent responses to changes in left ventricular (LV) volume in a heart with constantly activated myocardium. Hearts were isolated from rabbits, the myocardium was put into a state of constant activation by perfusion with Krebs Henseleit solution containing 0.5 mM Ba2+, and recordings were taken of LV pressure responses to step and sinusoidal changes in LV volume. Pressure responses to volume steps were divided into five characteristic phases. An elastance frequency spectrum was calculated from pressure responses to sinusoidal volume changes. Values of features of the elastance frequency spectrum were in accord with values of corresponding features of the step response. Using an explicit homology between elements responsible for LV pressure development (pressure generators) and elements responsible for muscle force development (myofilament cross-bridges), mathematical models were constructed to re-create the data. Basic assumptions were that (1) pressure was the summed effect of pressure generators undergoing volumetric distortion; (2) changes in volume brought about changes in both generator numbers (recruitment) and generator distortion; (3) pressure generators cycle through states that variously do and do not generate pressure. An initial two-step model included a cycle with one attachment step and one detachment step between non-pressure-bearing and pressure-bearing states. Predictions by the two-step model had many similarities with the experimental observations, but were lacking in some important respects. The two-step model was upgraded to a multiple-step model. In addition to multiple attachment and detachment steps within the cycle, the multiple-step model incorporated distortion-dependent detachment steps. The multiple-step model re-created all aspects of the experimentally observed step and frequency responses. Furthermore, this model was consistent with current theories of contractile processes.


Heart function Heart muscle Cross-bridges Step response Frequency response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arts, T., R. S. Reneman, and P. C. Veenstra. A model of the mechanics of the left ventricle.Ann. Biomed. Eng. 7: 299–318, 1979.PubMedGoogle Scholar
  2. 2.
    Berman, M. R., J. N. Peterson, D. T. Yue, and W. C. Hunter. Effect of isoproterenol on force transient time course and on stiffness spectra in rabbit papillary muscle in barium contracture.J. Mol. Cell. Cardiol. 20:415–426, 1988.PubMedGoogle Scholar
  3. 3.
    Brenner, B. Dynamic actin interaction of cross-bridges during force generation: Implications for cross-bridge action in muscle. In: Mechanisms of Myofilament Sliding in Muscle Contraction, edited by H. Sugi and G. H. Pollack. New York: Plenum Press, 1993, pp. 531–543.Google Scholar
  4. 4.
    Burton, K. Myosin step size: Estimates from motility assays and shortening muscle.J. Musc. Res. Cell Motil. 13:590–607, 1992.CrossRefGoogle Scholar
  5. 5.
    Campbell, K.B., S. G. Shroff, and R. D. Krikpatrick. Short-time-scale left ventricular systolic dynamics. Evidence for a common mechanism in both left ventricular chamber and heart muscle dynamics.Circ. Res. 68:1532–1548, 1991.PubMedGoogle Scholar
  6. 6.
    Campbell, K. B., A. R. Rahimi, D. L. Bell, R. D. Kirkpatrick, and J. A. Ringo. Pressure response to quick volume changes in tetanized isolated ferret hearts.Am. J. Physiol. 257 (Heart Circ. Physiol. 26):H38-H46, 1989.PubMedGoogle Scholar
  7. 7.
    Campbell, K.B., H. Taheri, R. D. Kirkpatrick, and B. K. Slinker. Single perturbed beat vs steady-state beats for assessing systolic mechanical function in the heart.Am. J. Physiol. 262 (Heart Circ. Physiol. 31):H1631-H1639, 1992.PubMedGoogle Scholar
  8. 8.
    Campbell, K. B., R. D. Kirkpatrick, G. G. Knowlen, and J. A. Ringo. Late-systolic pumping properties of the left ventricle. Deviation from elastance-resistance behavior.Circ. Res. 66:218–233, 1990.PubMedGoogle Scholar
  9. 9.
    Campbell, K. B., J. A. Ringo, Y. Wakao, P. A. Klavano, and J. E. Alexander. Internal capacitance and resistance allow prediction of right ventricle outflow.Am. J. Physiol. 243 (Heart Circ. Physiol. 12):H99-H112, 1982.PubMedGoogle Scholar
  10. 10.
    Campbell, K. B., J. A. Ringo, G. G. Knowlen, R. D. Kirkpatrick, and S. L. Schmidt. Validation of optional elastance-resistance left ventricle pump models.Am. J. Physiol. 251 (Heart Circ. Physiol. 20):H382-H397, 1986.PubMedGoogle Scholar
  11. 11.
    Campbell, K. B., H. Taheri, R. D. Kirkpatrick, T. Burton, and W. C. Hunter. Similarities between dynamic elastance of left ventricular chamber and papillary muscle of rabbit heart.Am. J. Physiol. 264 (Heart Circ. Physiol. 33):H1926-H1941, 1993.PubMedGoogle Scholar
  12. 12.
    Campbell, K. B., R. D. Kirkpatrick, A. H. Tobias, H. Taheri, and S. G. Shroff. Series coupled non-contractile elements are functionally unimportant in the isolated heart.Cardiovasc. Res. 28:242–251, 1994.PubMedGoogle Scholar
  13. 13.
    de Tombe, P. P., and H. E. D. J. ter Keurs. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium.J. Physiol. 454:619–642, 1992.PubMedGoogle Scholar
  14. 14.
    de Tombe, P. P., and W. C. Little. Inotropic effects of ejection are myocardial properties.Am. J. Physiol. 266 (Heart Circ. Physiol. 35):H1202-H1213, 1994.PubMedGoogle Scholar
  15. 15.
    Elzinga, G., and N. Westerhof. Pressure-volume relations in isolated cat trabecula.Circ. Res. 49:388–394, 1981.PubMedGoogle Scholar
  16. 16.
    Fabiato, A., and F. Fabiato. Myofilament generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells.J. Gen. Physiol. 72:667–699, 1978.CrossRefPubMedGoogle Scholar
  17. 17.
    Frank, O. Zur dynamik des herzmuskels.Zeitschrift Biologie 32:370–447, 1895.Google Scholar
  18. 18.
    Gupta, T., W. C. Hunter, and K. B. Campbell. Systolic shortening steps minimally alter subsequent force time course in rabbit myocardium.FASEB J. 5:A1395 1991.Google Scholar
  19. 19.
    Harada, Y., K. Sakurada, T. Aoki, D. D. Thomas, and T. Yanagida. Mechanochemical coupling in actomyosin energy transduction studied in in vitro movement assay.J. Mol. Biol. 216:49–68, 1990.PubMedGoogle Scholar
  20. 20.
    Hunter, W. C. End-systolic pressure as a balance between opposing effects of ejection.Circ. Res. 64:265–275, 1989.PubMedGoogle Scholar
  21. 21.
    Hunter, W. C., J. S. Janicki, K. T. Weber, and A. Noordergraaf. Systolic mechanical properties of the left ventricle: Effects of volume and contractile state.Circ. Res. 52: 319–327, 1983.PubMedGoogle Scholar
  22. 22.
    Huxley, A. F. Muscle structure and theories of contraction.Prog. Biophy. Chem. 7:255–318, 1957.Google Scholar
  23. 23.
    Huxley, A. F., and R. M. Simmons. Proposed mechanism of force generation in striated muscle.Nature 233:533–538, 1971.CrossRefPubMedGoogle Scholar
  24. 24.
    Katz, A. M., and P. B. Katz. Homogeneity out of heterogeneity.Circulation 79:712–717, 1989.PubMedGoogle Scholar
  25. 25.
    Kirkpatrick R. D., K. B. Campbell, D. L. Bell, and H. Taheri. Method for studying arterial wave transmission effects on left ventricular function.Am. J. Physiol. 260 (Heart Circ. Physiol. 29):H1003-H1012, 1991.PubMedGoogle Scholar
  26. 26.
    Lakatta, E. G., M. C. Capogrossi, A. A. Kort, and M. D. Stern. Spontaneous myocardial calcium oscillations: Overview with emphasis on ryanodine and caffeine.Fed. Proc. 44:2977–2983, 1985.PubMedGoogle Scholar
  27. 27.
    Leijendekker, W. J., and J. W. Herzig. Reduction of myocardial cross-bridge turnover rate in presence of EMD 53998, a novel Ca2+-sensitizing agent.Pflügers Arch. 421: 388–390, 1992.CrossRefPubMedGoogle Scholar
  28. 28.
    Lombardi, V., G. Piazzesi, and M. Linari. Rapid regeneration of the actin-myosin power stroke in contracting muscle.Nature 355:638–641, 1992.CrossRefPubMedGoogle Scholar
  29. 29.
    Lymn, R. W., and E. W. Taylor. Mechanism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10: 4617–4624, 1971.CrossRefPubMedGoogle Scholar
  30. 30.
    Linke, W. A., M. L. Bartoo, and G. H. Pollack. Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrils.Circ. Res. 73:724–734, 1993.PubMedGoogle Scholar
  31. 31.
    Lundblad, A., H. Gonzales-Serratos, G. Inesi, J. Swanson, and P. Paolini. Patterns of sarcomere activation, temperature dependence, and effect of ryanodine in chemically skinned cardiac fibers.J. Gen. Physiol. 87:885–905, 1986.CrossRefPubMedGoogle Scholar
  32. 32.
    Mason, D. T., J. F. Spann, and R. Zelis. Quantification of the contractile state of the intact human heart.Am. J. Cardiol. 26:248–257, 1970.CrossRefPubMedGoogle Scholar
  33. 33.
    Mulder, B. J. M., P. P. de Tombe, and H. E. D. J. ter Keurs. Spontaneous and propagated contractions in rat cardiac trabeculae.J. Gen. Physiol. 93:943–961, 1989.CrossRefPubMedGoogle Scholar
  34. 34.
    Pate, E., and R. Cooke. A model of crossbridge action: The effects of ATP, ADP and Pi.J. Musc. Res. Cell Motil. 10:181–196, 1989.CrossRefGoogle Scholar
  35. 35.
    Paulus, W. J., V. A. Claes, and D. L. Brutsaert. Physiological loading of isolated feline cardiac muscle. The interaction between muscle contraction and vascular impedance in the production of pressure and flow waves.Circ. Res. 44:491–497, 1979.PubMedGoogle Scholar
  36. 36.
    Prinzen, F. W., T. Arts, G. J. van der Vusse, W. A. Coumans, and R. S. Reneman. Gradients in fiber shortening and metabolism across ischemic left ventricular wall.Am. J. Physiol. 250 (Heart Circ. Physiol. 19):H255-H264, 1986.PubMedGoogle Scholar
  37. 37.
    Ringswandl, G., W. Motz, H. Meyrl, A. Schneider, K. Schwartz, and B. E. Strauer. Rapid transient analysis of myosin cross-bridge kinetics in hypertrophied hearts.Fed. Proc. 45:2585–2590, 1986.Google Scholar
  38. 38.
    Rodriquez, E. K., W. C. Hunter, M. J. Royce, M. K. Leppo, A. S. Douglas, and H. F. Weisman. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts.Am. J. Physiol. 263 (Heart Circ. Physiol 32):H293-H306, 1992.Google Scholar
  39. 39.
    Shibata, T., M. R. Berman, W. C. Hunter, and W. E. Jacobus. Metabolic and functional consequences of barium-induced contracture in rabbit myocardium.Am. J. Physiol. 259 (Heart Circ. Physiol. 28):H1566-H1574, 1990.PubMedGoogle Scholar
  40. 40.
    Shibata, T., W. C. Hunter, A. Young, and K. Sagawa. Dynamic stiffness measured in central segment of excised rabbit papillary muscles during barium contracture.Circ. Res. 60:756–769, 1987.PubMedGoogle Scholar
  41. 41.
    Shibata, T., W. C. Hunter, and K. Sagawa. Dynamic stiffness of barium-contractured cardiac muscles with different speeds of contraction.Circ. Res. 60:770–779, 1987.PubMedGoogle Scholar
  42. 42.
    Shroff, S. G., J. S. Janicki, and K. T. Weber. Left ventricular systolic dynamics in terms of its chamber mechanical properties.Am. J. Physiol. 245 (Heart Circ. Physiol. 14):H110-H124, 1983.PubMedGoogle Scholar
  43. 43.
    Shroff, S. G., J. S. Janicki, and K. T. Weber. Evidence of quantitation of left ventricle resistance.Am. J. Physiol. 249:H358-H370, 1985.PubMedGoogle Scholar
  44. 44.
    Shroff, S. G., K. B. Campbell, D. E. Miller, R. D. Kirkpatrick, and H. Taheri. Effect of temperature on short time scale left ventricular contractile dynamics.Circulation (Suppl I) 86:I-553, 1992.Google Scholar
  45. 45.
    Shroff, S. G., K. B. Campbell, and R. D. Kirkpatrick. Short time-scale systolic dynamics: Pressure versus volume clamps and effect of activation.Am. J. Physiol. 264 (Heart Circ. Physiol. 33):H946-H959, 1993.PubMedGoogle Scholar
  46. 46.
    Smith, D. A. Quantitative model for Schadler's isometric oscillations in insect flight and cardiac muscle.J. Musc. Res. Cell Motil. 12:455–465, 1991.CrossRefGoogle Scholar
  47. 47.
    Sonnenblick, E. H. Implications of muscle mechanics in the heart.Fed. Proc. 21:975–990, 1962.PubMedGoogle Scholar
  48. 48.
    Steiger, G. J. Tension transients in extracted rabbit heart muscle preparations.J. Mol. Cell. Cardiol. 9:671–685, 1977.PubMedGoogle Scholar
  49. 49.
    Streeter, D. D., H. M. Spotnitz, D. P. Patel, J. Ross, and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole.Circ. Res. 24:339–347, 1969.PubMedGoogle Scholar
  50. 50.
    Suga, H., and K. Sagawa. Instantaneous pressure-volume relationships and their relation in the excised, supported canine left ventricle.Circ. Res. 35:117–126, 1974.PubMedGoogle Scholar
  51. 51.
    Suga, H., L. Demer, and K. Sagawa. Determinants of instantaneous pressure in canine left ventricle.Circ. Res. 46: 314–322, 1980.Google Scholar
  52. 52.
    Vaartjes, S. R., and H. B. K. Boom. Left ventricular internal resistance and unloaded ejection flow assessed from pressure-flow relations: A flow-clamp study on isolated rabbit hearts.Circ. Res. 60:727–737, 1987.PubMedGoogle Scholar
  53. 53.
    van der Vusse, G. J., T. Arts, J. F. C., Glatz, and R. S. Reneman. Transmural differences in energy metabolism of the left ventricular myocardium: Fact or fiction.J. Mol. Cell. Cardiol. 22:23–37, 1990.PubMedGoogle Scholar
  54. 54.
    Woledge, R. C., N. A. Curtin, and E. Homsher.Energetic Aspects of Muscle Contraction. London: Academic Press, 1985, pp. 277–308.Google Scholar
  55. 55.
    Yanagida, T., T. Arata, and F. Oosawa. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.Nature 316:366–369, 1985.CrossRefPubMedGoogle Scholar
  56. 56.
    Yanagida, T., Y. Harada, and T. Kodama. Chemomechanical coupling in actomyosin asystem: An approach by in vitro movement assay and kinetic analysis of ATP hydrolysis by shortening myofibrils.Adv. Biophys. 27:237–257, 1991.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1994

Authors and Affiliations

  • Kenneth B. Campbell
    • 1
  • Luke W. Campbell
    • 1
  • J. Edson Pinto
    • 1
  • Thomas D. Burton
    • 2
  1. 1.Department of Veterinary and Comparative Anatomy, Pharmacology, and PhysiologyWashington State UniversityPullmanUSA
  2. 2.Department of Materials and Mechanical EngineeringWashington State UniversityPullmanUSA

Personalised recommendations