Skip to main content
Log in

Dynamical analysis of diastolic heart sounds associated with coronary artery disease

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In a new approach to noninvasively diagnose coronary artery disease (CAD), auditory correlates attributed to blood flow turbulence have been associated with stenosed coronary arteries. These auditory components have been detected in diseased subjects by spectral estimation of diastolic heart sound recordings made on the surface of the chest. In this study, we investigated the dynamics of the process that produces these sounds in diseased subjects by applying the techniques of dimensional analysis. Our results indicate a difference in the “correlation dimension” between heart sounds of diseased and normal subjects. In particular, diseased subjects show a fractal dimension, implying the presence of a strange attractor and the possible existence of low-dimensional chaos in sounds associated with coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J.B. Detection of coronary occlusions using autoregressive modeling of diastolic heart sounds. IEEE Trans. Biomed. Eng. 37:366–373; 1990.

    CAS  PubMed  Google Scholar 

  2. Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J.B. Non-invasive detection of coronary occlusions using eigenvector methods before and after angioplasty. IEEE Trans. Biomed. Eng. 37:1095–1106; 1991.

    Google Scholar 

  3. Albano, A.M.; Muench, J.; Schwartz, C.; Mees, A.I.; Rapp, P.E. Singular-value decomposition and the Grassberger Procaccia algorithm. Phys. Rev. 38(6):3017–3026; 1988.

    Google Scholar 

  4. Babloyantz, A.A. Destexhe Low dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83:3513–3517; 1986.

    CAS  PubMed  Google Scholar 

  5. Broomhead, D.S.; King, G.P. Extracting qualitative dynamics from experimental data. Physica 20D:217–236; 1986.

    Google Scholar 

  6. Duncan, G.W.; Gruber, J.O.; Dewey, C.F.; Meyers, G.S.; Lees, R.S. Evaluation of carotid stenosis by phonocardiography. New Engl. J. Med. 27:1124–1128; 1975.

    Google Scholar 

  7. Durand, L.-G.; Genest, J.; Guardo, R. Modeling of the transfer function of the heart-thorax acoustic system in dogs. IEEE Trans. Biomed. Eng. 32:592–601; 1985.

    CAS  PubMed  Google Scholar 

  8. Frank, G.W.; Lookman, T.; Nerenberg, M.A.H.; Essex, C.; Lemieux, J.; Blume, W. Chaotic time series analyses of epileptic seizures. Physica D 46:427–438; 1990.

    Article  Google Scholar 

  9. Fredburg, J.J. Pseudo-sound generation in atherosclerotic constrictions in arteries. Bull. Math. Biol. 36:143–155; 1974.

    Google Scholar 

  10. Grassberger, P.I. Procaccia. Measuring the strangeness of strange attractors. Physica, 9D:189–208; 1983.

    Google Scholar 

  11. Lees, R.S.; Myers, G.S. Noninvasive diagnosis of arterial disease. Adv. Intern. 24:475–509; 1982.

    Google Scholar 

  12. Lo, P.C.; Principe, J. The effect of filtering in the EEG correlation dimension estimation: experimental results. IEEE Engineering in Medicine and Biology Society 11th Annual International Conference, pp. 638–639, 1989.

  13. Mayer-Kress, G.; Layne, S.P. Dimensionality of the Human Electroencephalogram. Annals New York Academy of Sciences, pp. 65–87, 1986.

  14. Mayer-Kress, G.; Yates, F.E.; Benton, L.; Keidel, M.; Tirsch, W.; Poppl, S.J.; Geist, K. Dimensional analysis of nonlinear oscillations in brain, heart, and muscle. J. Math. Biosci. 90:155–182; 1988.

    Google Scholar 

  15. Padmanabhan, V.; Fischer, R.F.; Semmlow, J.L.; Welkowitz, W. High sensitivity PCG transducer for extended frequency applications. IEEE Engineering in Medicine and Biology Society 11th Annual International Conference, pp. 57–59, 1989.

  16. Parker, T.S.; Chua, L.O. Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, 1989.

    Google Scholar 

  17. Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes, The Art of Scientific Computing Cambridge University Press, 1989.

  18. Rapp, P.E.; Zimmerman, I.D. Experimental studies of chaotic neural behavior: Cellular activity and EEG signals. Nonlinear Oscillations in Biology and Chemistry. New York: Springer-Verlag, pp. 175–205, 1985.

    Google Scholar 

  19. Rosen, R.M.; Shakkottai, B.S.; Parthasarathy, P.; Turner, A.F.; Blankenhorn, D.H.; Roschke, E.J. Phonoangiography by autocorrelation. Circulation 55(4):626–633; 1977.

    CAS  PubMed  Google Scholar 

  20. Ruelle, D. Small random perturbations of dynamical systems and the definition of attractors. Comm. Math. Phys. 82:137–151; 1971.

    Google Scholar 

  21. Semmlow, J.L.; Welkowitz, W.; Kostis, J.; MacKenzie, J.W. Coronary artery disease—correlates between diastolic auditory characteristics and coronary artery stenoses. IEEE Trans. Biomed. Eng. 30:136–139; 1983.

    CAS  PubMed  Google Scholar 

  22. Skinner, J.E.; Goldberger, A.L.; Mayer-Kress, E.G. Raymond. Chaos in the heart: Implications for clinical cardiology. Biotechnology 8:1018–1024; 1990.

    Google Scholar 

  23. Webster, J.G. Medical Instrumentation, Application and Design. Boston: Houghton Mifflin Company, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmanabhan, V., Semmlow, J.L. Dynamical analysis of diastolic heart sounds associated with coronary artery disease. Ann Biomed Eng 22, 264–271 (1994). https://doi.org/10.1007/BF02368233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368233

Keywords

Navigation