Skip to main content
Log in

Electrical properties of implant encapsulation tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the electrical properties of the encapsulation tissue that surrounds electrodes chronically implanted in the body. Two four-electrode arrays, fabricated from either epoxy or silicone rubber, were implanted in each of six adult cats for 82 to 156 days.In vivo measurements of tissue resistivity using the four-electrode technique indicated that formation of the encapsulation tissue resulted in a significant increase in the resistivity of the tissue around the arrays.In vitro measurements of tissue impedance using a four-electrode cell indicated that the resistivity of the encapsulation tissue was a function of the tissue morphology. The tight layers of fibroblasts and collagen that formed around the silicone rubber arrays had a resistivity of 627±108 Ω-cm (mean ± SD; n=6), which was independent of frequency from 10 Hz to 100 kHz, and was significantly larger than the resistivity of the epoxy encapsulation tissue at all frequencies between 20 Hz and 100 kHz. The combination of macrophages, foreign body giant cells, loose collagen, and fibroblasts that formed around the epoxy arrays had a frequency-dependent resistivity that decreased from 454±123 Ω-cm (n=5) to 193±98 Ω-cm between 10 Hz and 1 kHz, and was independent of frequency between 1 kHz and 100 kHz, with a mean value of 195 ±88 Ω-cm. The results indicate that the resistivity of the encapsulation tissue is sufficient to alter the shape and magnitude of the electric field generated by chronically implanted electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ρ:

apparent resistivity of tissue around arrays measuredin vivo

V:

magnitude of the voltage response measured between the inner pair of electrodes on an array

I:

magnitude of the current applied between the outer pair of electrodes on an array

a:

interelectrode spacing on the array

f :

sinusoidal frequency

ρ(f):

resistivity of encapsulation tissue measuredin vitro

V(f):

voltage response measured with tissue in the cell

Vos(f):

offset voltage response measured without tissue in the cell

A:

cross-sectional area of the interior of the four-electrode cell

I(f):

current applied between the outer pair of electrodes in the cell

t:

thickness of tissue samples measured from fixed and stained samples

References

  1. Ackmann, J.J.; Seitz, M.A. Methods of complex impedance measurements in biologic tissue. CRC Crit. Rev. Biomed. Eng. 11:281–311; 1984.

    CAS  Google Scholar 

  2. Agnew, W.F.; McCreery, D.B.; Yuen, T.G.H.; Bullara, L.A. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann. Biomed. Eng. 17:39–60; 1989.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J.M. Inflammatory response to implants. Trans. Am. Soc. Artif. Int. Organs Vol. XXXIV:101–107; 1988.

    Google Scholar 

  4. Bartlett, J.R.; Doty, R.W.; Lee, B.B.; Negrao, N.; Overman, w.H. Deleterious effects of prolonged electrical stimulation of striate cortex in macaques. Brain Behav. Evol. 14:46–66; 1977.

    CAS  PubMed  Google Scholar 

  5. Bak, M.; Girvin, J.P.; Hambrecht, F.T.; Kufta, C.V.; Loeb, G.E.; Schmidt, E.M. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput. 28:257–259; 1991.

    Google Scholar 

  6. Brindley, G.S.; Lewin, W.S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196:479–493; 1968.

    CAS  Google Scholar 

  7. Chintalacharuvu, R.R.; Ksienski, D.A.; Mortimer, J.T. A numerical analysis of the electric field generated by a nerve cuff electrode. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 13:912–913; 1991.

    Google Scholar 

  8. Chintalacharuvu, R.R.; Ksienski, D.A.; Mortimer, J.T. A numerical analysis of the electric field generated by a nerve cuff electrode using the finite element method. IEEE Trans. Biomed. Eng. 1994 (in press).

  9. Coleman, D.L.; King, R.N.; Andrade, J.D. The foreign body reaction: a chronic inflammatory response. J. Biomed. Mater. Res. 8:199–211; 1974.

    CAS  PubMed  Google Scholar 

  10. De Luca, C.J.; Gilmore, L.D.; Bloom, L.J.; Thomson, S.J.; Cudworth, A.L.; Glimcher, M.J. Long-term neuroelectric signal recording from severed nerves. IEEE Trans. Biomed. Eng. 29:393–402; 1982.

    PubMed  Google Scholar 

  11. Devore, J.L. Probability and statistics for engineering and the sciences, ed. 2. Monterey, CA: Brooks/Cole; 1987: pp. 608–614.

    Google Scholar 

  12. Eisenberg, R.S.; Mathias, R.T. Structural analysis of electrical properties of cells and tissues. CRC Crit. Rev. Biomed. Eng. 4:203–232; 1980.

    CAS  Google Scholar 

  13. Geddes, L.A.; Baker, L.E. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5:271–293; 1967.

    CAS  PubMed  Google Scholar 

  14. Grandjean, P.A.; Mortimer, J.T. Recruitment properties of monopolar and bipolar epimysial electrodes. Ann. Biomed. Eng. 14:53–66; 1986.

    CAS  PubMed  Google Scholar 

  15. Grill, W.M.; Veraart, C.; Mortimer, J.T. Selective activation of peripheral nerve fascicles: use of field steering currents. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 13:904–905; 1991.

    Google Scholar 

  16. Grill, W.M.; Mortimer, J.T. Electrical impedance of electrode encapsulation tissue. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 14:1376–1377; 1992.

    Google Scholar 

  17. Lefurge, T.; Goodall, E.; Horch, K.; Stensaas, L.; Schoenberg, A. Chronically implanted intrafascicular recording electrodes. Ann. Biomed. Eng. 19:197–207; 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Loeb, G.E.; McHardy, J.; Kelliher, E.M.; Brummer, S.B. Neural prostheses.In: Williams, D.F.; ed. Biocompatibility in clinical practice, vol II. Boca Raton, FL, CRC Press; 1982: pp. 123–149.

    Google Scholar 

  19. Malek, A.M.; Mark, R.G. Functional electrical stimulation for the latissimus dorsi muscle for use in cardiac assist. IEEE Trans. Biomed. Eng. 36:781–788; 1989.

    Article  CAS  PubMed  Google Scholar 

  20. Marsolais, E.B.; Kobetic, R. Functional electrical stimulation for walking in paraplegia. J. Bone Joint Surg. [Am] 69-A:728–733; 1987.

    Google Scholar 

  21. Martau, J.M. Evaluation of the efficacy and safety of chronic electrical block of the pudenal nerve. M.S. Thesis. Department of Biomedical Engineering. Case Western Reserve University. 1991.

  22. Matlaga, B.F.; Yasenchak, L.P.; Salthouse, T.N. Tissue response to implanted polymers: the significance of sample shape. J. Biomed. Mater. Res. 10:391–397; 1976.

    Article  CAS  PubMed  Google Scholar 

  23. McNamara, A.; Williams, D.F. The response to the intramuscular implantation of pure metals. Biomaterials 2:33–40; 1981.

    Article  CAS  PubMed  Google Scholar 

  24. Mortimer, J.T.; Kaufman, D.; Roessmann, U. Intramuscular electrical stimulation: tissue damage. Ann. Biomed. Eng. 8:235–244; 1980.

    CAS  PubMed  Google Scholar 

  25. Naples, G.G.; Mortimer, J.T.; Yuen, T.G.H. Overview of peripheral nerve electrode design and implantation.In: Agnew, W.F.; McCreery, D.B.; eds. Neural prostheses: Fundamental Studies. Englewood Cliffs, NJ: Prentice Hall; 1990: pp. 108–145.

    Google Scholar 

  26. Nashold, B.S., Jr.; Friedman, H. Dorsal column stimulation for control of pain. J. Neurosurg. 36:590–597; 1972.

    PubMed  Google Scholar 

  27. Peckham, P.H.; Keith, M.W.; Freehafer, A.A. Restoration of functional control by electrical stimulation in the upper extremity of the quadriplegic patient. J. Bone Joint Surg. [Am] 70:144–148; 1988.

    CAS  Google Scholar 

  28. Pineda, A. Complications of dorsal column stimulation. J. Neurosurg. 48:64–68; 1978.

    CAS  PubMed  Google Scholar 

  29. Plonsey, R. Bioelectric phenomena. New York: McGraw-Hill; 1969: pp. 359–360.

    Google Scholar 

  30. Reynolds, A.F.; Shetter, A.G.. Scarring around cervical epidural stimulating electrode. Neurosurgery 13:63–64; 1983.

    CAS  PubMed  Google Scholar 

  31. Robbins, S.L.; Cotran, R.S. Pathologic basis of disease. Philadelphia, PA: W.B. Saunders; 1979: pp. 90–106.

    Google Scholar 

  32. Ross, R. Wound healing. Sci. Am. 220:40–50; 1969.

    CAS  PubMed  Google Scholar 

  33. Rutten, W.L.C.; van Wier, H.J.; Put, J.H.M. Sensitivity and selectivity of intraneural stimulation using a silicon electrode array. IEEE Trans. Biomed. Eng. 38:192–198; 1991.

    Article  CAS  PubMed  Google Scholar 

  34. Schindler, R.A.; Merzenich, M.M.; eds. Cochlear implants. New York: Raven; 1985.

    Google Scholar 

  35. Schwan, H.P. Electrical properties of tissue and cell suspensions.In: Lawrence, J.H.; Tobias, L.A.; eds. Advances in biological and medical physics, vol. 5. New York: Academic Press; 1957: pp. 147–209.

    Google Scholar 

  36. Schwan, H.P. Determination of biological impedance.In: Natuk, W.L.; ed. Physical techniques in biological research. New York: Academic Press; 1963: pp. 323–407.

    Google Scholar 

  37. Stein, R.B.; Charles, D.; Gordon, T.; Hoffer, J.A.; Jhamandas, J. Impedance of metal electrodes for chronic recording from mammalian nerves. IEEE Trans. Biomed. Eng. 25:532–537; 1978.

    CAS  PubMed  Google Scholar 

  38. Stensaas, S.S.; Stensaas, L.J. Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol. 41:145–155; 1978.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, S.R.; Gibbons, D.F. Effect of surface texture of the soft tissue response to polymer implants. J. Biomed. Mater. Res. 17:205–227; 1983.

    Article  PubMed  Google Scholar 

  40. Thoma, H.; Gerner, H.; Holle, J.; Kluger, P.; Mayr, W.; Meister, B.; Schwanda, G.; Stohr, H. The phrenic pacemaker: substitution of paralyzed functions in tetraplegia. Am. Soc. Artif. Intern. Organs Trans. 10:472–479; 1987.

    Google Scholar 

  41. Wood, N.K.; Kaminski, E.J.; Oglesby, R.J. The significance of implant shape in experimental testing of biological materials: disk vs. rod. J. Biomed. Mater. Res. 4:1–12; 1970.

    Article  CAS  PubMed  Google Scholar 

  42. Ziaie, B.; Gianchandani, Y.; Najafi, K. A high-current IrOx thin-film neuromuscular microstimulator. Proc. Int. Solid-State Sensors and Actuators. Conf. 124–127; 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill, W.M., Thomas Mortimer, J. Electrical properties of implant encapsulation tissue. Ann Biomed Eng 22, 23–33 (1994). https://doi.org/10.1007/BF02368219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368219

Keywords

Navigation