Annals of Biomedical Engineering

, Volume 21, Issue 1, pp 9–17 | Cite as

Application of adaptive FTF/FAEST zero tracking filters to noninvasive characterization of the sound pattern caused by coronary artery stenosis before and after angioplasty

  • M. Akay
  • Y. M. Akay
  • W. Welkowitz
  • J. L. Semmlow
  • J. Kostis
Article

Abstract

This article presents a new signal processing application that can be used for acoustical detection of coronary artery disease before and after angioplasty. The adaptive Autoregressive (AR) method based on the FTF/FAEST (Fast transversal filters/Fasta posteriori error sequential techniques) is used to track acoustical behavior associated with coronary occlusions. Using the amplitude trajectory of the second pole pair of this method, 9 out of 10 angioplasty patients were correctly identified using a blind protocol without prior knowledge of whether a given recording was made before and after angioplasty. These results were obtained from signals located between 200 and 300 msec after the end of the second heart sound during the diastolic period.

Keywords

Adaptive zero tracking filters Coronary artery disease Heart sounds Acoustic 

Nomenclature

An(z)

pole polynomial

ai(n)

forward prediction coefficient vector

bi(n)

backward prediction coefficient vector

E+(n)

forward minimum sum of error squares

E±(n)

forward and backward minimum sum of error squares

e+(n)

a posteriori forward estimation error

e+(n/n−1)

a priori forward estimation error

hi(n)

filter weight vector

ki(n)

Kalman gain vector

ki(n/n−1)

a priori Kalman gain vector

m

filter order

x(n)

input signal

yi(n)

tap-inputs vector

zi(n)

poles

Δai(n)

forward prediction updating term

Δzi(n)

poles updating term

ε

performance index

λ

forgetting factor

μ(n)

likelihood variable

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aafif, F. Extraction and linear prediction modeling of the VEP. Piscataway, NJ: Dept. of Electrical Engineering, Rutgers University; 1989. Ph.D. Thesis.Google Scholar
  2. 2.
    Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J. Detection of coronary occlusions using AR modelling of diastolic heart sounds. IEEE Trans. on Biomed. Eng. 37:366–373; 1990.Google Scholar
  3. 3.
    Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J. Noninvasive detection of coronary occlusions using eigenvector methods before and after angioplasty. IEEE Trans. on Biomed. Eng. 37:1095–1104; 1990.Google Scholar
  4. 4.
    Akay, M. Noninvasive detection of coronary artery disease using advanced signal processing methods. Piscataway, NJ: Rutgers University; 1990. Ph.D. Dissertation.Google Scholar
  5. 5.
    Akay, M.; Welkowitz, W.; Semmlow, J.L.; Kostis, J. Application of the ARMA method to acoustic detection of coronary artery disease. Med. Biol. Eng. Comput. 29;365–372; 1991.PubMedGoogle Scholar
  6. 6.
    Al-Nashash, H.A.M.; Kelly, S.W. Beat-to-beat detection of His-Purkinje system signals using adaptive filters. Med. Biol. Eng. Comput. 26:117–125; 1987.Google Scholar
  7. 7.
    Bruzzone, S.P.; Kaveh, M. Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation. IEEE Trans. Acoustics, Speech, Signal Processing 32:701–715; 1984.Google Scholar
  8. 8.
    Carayannis, G.C.; Manolakis, D.; Kalouptsidis, N. A fast sequential algorithm for least-squares filtering and prediction. IEEE Trans. Acoustics, Speech, Signal Processing 31:1394; 1983.Google Scholar
  9. 9.
    Cheng, T.O. Diagnostic murmur caused by coronary artery stenosis. Ann. Intern. Med. 72:543–546; 1970.PubMedGoogle Scholar
  10. 10.
    Cioffi, J.; Kailath, T. Fast recursive least squares, transversal filters for adaptive filtering. IEEE Trans. ASSP. 32:304; 1984.Google Scholar
  11. 11.
    Dock, W.; Zoneraich, S. A diastolic murmur arising in a stenosed coronary artery. Am. J. Med. 42:617; 1967.CrossRefPubMedGoogle Scholar
  12. 12.
    Dotter, C.T.; Grant, P.M. Transluminal treatment of arteriosclerotic obstructions: Description of a new technique and its a preliminary report of its application. Circ. 30:654; 1964.Google Scholar
  13. 13.
    Ferrara, E.R.; Widrow, B. Adaptive filtering for signal enhancement. IEEE Trans. ASSP. p. 29; 1981.Google Scholar
  14. 14.
    Friedlander, B.; Porat, B. Modified Yule-Walker of ARMA spectral estimator. IEEE Trans. Aerospace, Electronic, Systems 20:158–172; 1984.Google Scholar
  15. 15.
    Ganong, W.F. Review of medical physiology. Los Altos, CA: Lange Medical Publications; 1981.Google Scholar
  16. 16.
    Gruntzig, A.R.; Sennining, A.; Siegenthaler, W.E. Nonoperative dilation of CAD: Percutaneous transluminal coronary angioplasty. New Eng. J. Med. 301:61; 1979.PubMedGoogle Scholar
  17. 17.
    Izraelevitz, D.; Lim, J.S. Spectral characteristics of the overdetermined normal equation method for spectral estimation. Proceedings of the 2nd ASSP Spectral Estimator Workshop: 1983: pp. 49–54.Google Scholar
  18. 18.
    Haykin, S. Adaptive filter theory. Englewood Cliffs, NJ: Prentice Hall; 1986.Google Scholar
  19. 19.
    Kartchner, M.M.; McRae, L.P.; Morrison, F.D. Noninvasive detection and evaluation of carotid occlusive disease. Arch. Surg. 106:528–535; 1973.PubMedGoogle Scholar
  20. 20.
    Kaveh, M.; Bruzzone, S.P. A comparative overview of ARMA spectral estimators. Proceedings of the 1st. ASSP Spectral Estimation Workshop: 1981: pp. 2.4.1–2.4.8.Google Scholar
  21. 21.
    Khalifa, A.M.A.; Giddens, D.P. Characterization of poststenotic flow disturbances. J. Biomechanics. 14:275–296; 1981.Google Scholar
  22. 22.
    Ko, C.C.; Thum, K.L.; Ser, W.; Quek, T.S. A simple fast adaptive zero tracking algorithm. Signal Processing 20:315–323; 1990.CrossRefGoogle Scholar
  23. 23.
    Kurtz, K.J. Dynamic vascular auscultation. Am. J. Med. 76:1066–1074; 1984.CrossRefPubMedGoogle Scholar
  24. 24.
    Lees, R.S.; Forbes Dewey, Jr., C. Phonoangiography: A new noninvasive diagnostic method for studying arterial disease. Proceedings of the National Academy of Sciences 67:935–942; 1970.Google Scholar
  25. 25.
    Lees, R.S.; Myers, G.S. Noninvasive diagnosis of arterial disease. Adv. Intern. 23:475–509; 1982.Google Scholar
  26. 26.
    Markel, J.D.; Gray, A.H. Linear prediction of speech. 3rd ed. New York: Springer-Verlag; 1982.Google Scholar
  27. 27.
    Nehorai, A.; Starer, D. Adaptive pole estimation. IEEE ASSP. p. 38; 1990.Google Scholar
  28. 28.
    Orfanidis, S.J. Optimum signal processing. New York: Macmillan; 1988.Google Scholar
  29. 29.
    Orfanidis, S.J.; Vail, L.M. Zero tracking adaptive filters. IEEE Trans. ASSP. 34:1566–1572; 1986.Google Scholar
  30. 30.
    Padmanabhan, V., Fisher, R.; Semmlow, J.L.; Welkowitz, W.; Kostis, J. High sensitivity PCG transducer for extended frequency applications. Proc. IEEE Frontiers in Medicine, Seattle; 1989: pp. 57–59.Google Scholar
  31. 31.
    Ragowski, Z.; Gath, I.; Bental, E. On the prediction of epileptic seizures. Biol. Cybernet. 42:9–15; 1981.Google Scholar
  32. 32.
    Sangster, J.F.; Oakley, C.M. Diastolic murmur of coronary artery stenosis. Br. Heart J. 35:840–844; 1973.PubMedGoogle Scholar
  33. 33.
    Semmlow, J.L.; Welkowitz, W.; Kostis, J.; Mackenzie, W. Coronary artery disease-correlates between diastolic auditory characteristic and coronary artery stenoses. IEEE Trans. Biomed. Eng. 30:136–139; 1983.PubMedGoogle Scholar
  34. 34.
    Semmlow, J.L.; Akay, M.; Welkowitz, W. Noninvasive detection of CAD using parametric analysis methods. IEEE EMBS Magazine 9:33–37; 1990.Google Scholar
  35. 35.
    Vail, L.M. Linearly constrained zero-adaptive algorithms and adaptive array superposition. Piscataway, NJ: Dept. of Electrical Engineering, Rutgers University; 1985. M.S. Thesis.Google Scholar
  36. 36.
    Von Mises, R. Mathematical theory of probability and statistics. New York: Academic Press; 1964.Google Scholar

Copyright information

© Pergamon Press Ltd. 1993

Authors and Affiliations

  • M. Akay
    • 1
  • Y. M. Akay
    • 1
  • W. Welkowitz
    • 1
    • 2
  • J. L. Semmlow
    • 1
    • 2
  • J. Kostis
    • 1
    • 2
  1. 1.Department of Surgery (Bioengineering)UMDNJ-Robert Wood Johnson Medical SchoolNew Brunswick
  2. 2.Department of MedicineUMDNJ-Robert Wood Johnson Medical SchoolNew Brunswick

Personalised recommendations