Skip to main content
Log in

Impedance-Derived cardiac indices in supine and upright exercise

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Impedance cardiography was used to determine the classical systolic time intervals (STI's) (i.e., pre-ejection period (PEP), left ventricular ejection time (LVET) and the quotient PEP/LVET), in young, healthy, male subjects during supine and seated exercise. With increasing exercise, there was a tendency toward decreases in PEP, LVET, and PEP/LVET. In the seated position, there was an increase in transthoracic Zo incident to the caudal migration of thoracic blood—a result of the postural change. With seated exercise, there were—in contrast to supine exercise—greater decreases in PEP/LVET and greater increases in the Heather index. Similarly, there was a tendency toward increases in dZ/dtmin and the Rapid Ejection Index. We suggest that these differences are related to increased myocardial contractility resulting from the postural augmentation of cardio-sympathetic activity, added to that of exercise per se. This study, as well as previous ones, indicates that impedance cardiography is reliable, effective, and more practicable than the arteriographic method for monitoring STI's. We also believe that certain impedance-derived indices (i.e., transthoracic Zo, dZ/dtmin and the Heather Index) have considerable potential value for physiologic and clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, L.E.; Judy, W.V.; Geddes, L.E.; Langley, F.M.; Hill, D.W. The measurement of cardiac output by means of electrical impedance. Cardiovasc. Res. Ctr. Bull. 9:135–145; 1971.

    Google Scholar 

  2. Denniston, J.C.; Baker, L.E. Measurement of pleural effusion by electrical impedance. J. Appl. Physiol. 38:851; 1975.

    CAS  PubMed  Google Scholar 

  3. Denniston, J.C.; Maher, J.T.; Reeves, J.T.; Cruz, J.C.; Cymerman, A.; Grover, R.F. Measurement of cardiac output by electrical impedance at rest and during exercise. J. Appl. Physiol. 40:91–95; 1976.

    CAS  PubMed  Google Scholar 

  4. Ebert, T.J.; Eckberg, D.L.; Vetrovec, G.M.; Cowley, M.J. Impedance cardiograms accurately estimate changes in left ventricular stroke volume in man. Cardiovasc. Res. 18:354–360; 1984.

    CAS  PubMed  Google Scholar 

  5. Ebert, T.J.; Smith, J.J.; Barney, J.A.; Merrill, D.C.; Smith, G.K. The use of thoracic impedance for determining thoracic blood volume changes in man. Aviat. Sp. Environ. Med. 57:49–53; 1986.

    CAS  Google Scholar 

  6. Frey, M.A.B.; Doerr, B.M. Correlations between ejection times measured from the carotid pulse contour and the impedance cardiogram. Aviat. Sp. Environ. Med. 54:894–897; 1983.

    CAS  Google Scholar 

  7. Gollan, F.; Kizakevich, P.N.; McDermott, J. Continuous electrode monitoring of systolic time intervals during exercise. Brit. Heart J. 40:1390–1396; 1978.

    CAS  PubMed  Google Scholar 

  8. Harris, W.S. Systolic time intervals in the noninvasive assessment of left ventricular performance in man. In: Mirsky, I.; Ghista, D.N.; Sandler, H., eds. Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. New York: John Wiley; 1974: 233–292.

    Google Scholar 

  9. Hill, D.W.; Merrifield, A.J. Left ventricular ejection and the heather index measured by non-invasive methods during postural changes in man. Acta Anaesth. Scand. 20:313–320; 1976.

    CAS  PubMed  Google Scholar 

  10. Kubicek, W.G.; Ramos, M.U.; Patterson, R.P.;et al. The Minnesota impedance cardiograph—theory and applications. Biomed. Eng. 9;410–416; 1974.

    CAS  PubMed  Google Scholar 

  11. Lewis, R.P.; Leighton, R.F.; Forester, W.F.; Weissler, A.M. Systolic time intervals. In: Weissler, A.M., ed. Noninvasive Cardiology. New York: Stratton and Grune; 1974; 301–368.

    Google Scholar 

  12. Mancini, R.; Kottke, F.J.; Patterson, R.; Kubicek, W.;et al. Cardiac output contractility indices. Arch. Phys. Med. Rehab. 60:567–573; 1979.

    CAS  Google Scholar 

  13. Miyamoto, Y.; Higuchi, J.; Abe, Y.;et al. Dynamics of cardiac output and systolic time intervals in supine and upright exercise. J. Appl. Physiol. 55:1674–1681; 1983.

    CAS  PubMed  Google Scholar 

  14. Muzi, M.; Ebert, T.J.; Tristani, F.E.; Jeutter, D.C.; Barney, J.A.; Smith, J.J. Determination of cardiac output using ensemble-averaged impedance cardiograms. J. Appl. Physiol. 58:200–205; 1985.

    CAS  PubMed  Google Scholar 

  15. Pigott, V.M.; Spodick, D.W.; Rectra, E.H.;et al. Circulatory responses to exercise. Am. Heart J. 82:632–641; 1971.

    CAS  PubMed  Google Scholar 

  16. Ramos, M.U.; LeBree, J.W.; Remole, W.; Kubicek, W.G. Transthoracic electrical impedance: A clinical guide of pulmonary fluid accumulation. Minn. Med. 58:671; 1975.

    CAS  PubMed  Google Scholar 

  17. Sheps, D.S.; Petrovick, M.L.; Kizakevich, et al. Continuous noninvasive monitoring of ventricular function with impedance cardiography. Am. Heart J. 103:519–524; 1982.

    Article  CAS  PubMed  Google Scholar 

  18. Smith, J.J.; Bush, J.E.; Wiedmeier, V.T.; Tristani, F.E. Application of impedance cardiography to study of postural stress. J. Appl. Physiol. 29:133–137; 1970.

    CAS  PubMed  Google Scholar 

  19. Smith, J.J.; Porth, C.J.; Reinke, J.A.; Ebert, T.J.; Tristani, F.E. Impedance derived cardiac indices in coronary heart disease. Physiologist 20:88; 1977.

    Google Scholar 

  20. Smith, J.J.; Kampine, J.P. Circulatory physiology—The essentials, 2nd ed. Baltimore: William and Wilkins; 1984.

    Google Scholar 

  21. Smith, J.J.; Muzi, M.; Ebert, T.J.; Kircher, J.J.; Barney, J.A. Impedance cardiography and circulatory response to stress. Proc. 10th Int. Conference, Engineering in Medicine and Biology Soc., IEEE, Chap. 2566, 8/88, 0000–0766; 1988.

  22. Spodick, D.H.; Meyer, M.; St. Pierre, J.R. Effect of upright tilt on the phases of the cardiac cycle in normal subjects. Cardiovasc. Res. 5:210–214; 1971.

    CAS  PubMed  Google Scholar 

  23. Van de Water, J.M.; Mount, B.E.; Barela, J.R.;et al. Monitoring the chest with impedance. Chest 64:597; 1973.

    PubMed  Google Scholar 

  24. Wolfe, L.A.; Cunningham, D.A.; Davis, G.M.;et al. Reliability of non-invasive methods for measuring cardiac function in exercise. J. Appl. Physiol. 44:55–58; 1978.

    CAS  PubMed  Google Scholar 

  25. Xenakis, A.P.; Quarry, V.M.; Spodick, D.H. Immediate cardiac response to exercise. Am. Heart J. 89:178–185; 1975.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.J., Muzi, M., Barney, J.A. et al. Impedance-Derived cardiac indices in supine and upright exercise. Ann Biomed Eng 17, 507–515 (1989). https://doi.org/10.1007/BF02368070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368070

Keywords

Navigation