Annals of Biomedical Engineering

, Volume 17, Issue 5, pp 507–515 | Cite as

Impedance-Derived cardiac indices in supine and upright exercise

  • James J. Smith
  • Michael Muzi
  • Jill A. Barney
  • Jeff Ceschi
  • John Hayes
  • Thomas J. Ebert
Article

Abstract

Impedance cardiography was used to determine the classical systolic time intervals (STI's) (i.e., pre-ejection period (PEP), left ventricular ejection time (LVET) and the quotient PEP/LVET), in young, healthy, male subjects during supine and seated exercise. With increasing exercise, there was a tendency toward decreases in PEP, LVET, and PEP/LVET. In the seated position, there was an increase in transthoracic Zo incident to the caudal migration of thoracic blood—a result of the postural change. With seated exercise, there were—in contrast to supine exercise—greater decreases in PEP/LVET and greater increases in the Heather index. Similarly, there was a tendency toward increases in dZ/dtmin and the Rapid Ejection Index. We suggest that these differences are related to increased myocardial contractility resulting from the postural augmentation of cardio-sympathetic activity, added to that of exercise per se. This study, as well as previous ones, indicates that impedance cardiography is reliable, effective, and more practicable than the arteriographic method for monitoring STI's. We also believe that certain impedance-derived indices (i.e., transthoracic Zo, dZ/dtmin and the Heather Index) have considerable potential value for physiologic and clinical investigation.

Keywords

Impedance cardiography Systolic time intervals Exercise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, L.E.; Judy, W.V.; Geddes, L.E.; Langley, F.M.; Hill, D.W. The measurement of cardiac output by means of electrical impedance. Cardiovasc. Res. Ctr. Bull. 9:135–145; 1971.Google Scholar
  2. 2.
    Denniston, J.C.; Baker, L.E. Measurement of pleural effusion by electrical impedance. J. Appl. Physiol. 38:851; 1975.PubMedGoogle Scholar
  3. 3.
    Denniston, J.C.; Maher, J.T.; Reeves, J.T.; Cruz, J.C.; Cymerman, A.; Grover, R.F. Measurement of cardiac output by electrical impedance at rest and during exercise. J. Appl. Physiol. 40:91–95; 1976.PubMedGoogle Scholar
  4. 4.
    Ebert, T.J.; Eckberg, D.L.; Vetrovec, G.M.; Cowley, M.J. Impedance cardiograms accurately estimate changes in left ventricular stroke volume in man. Cardiovasc. Res. 18:354–360; 1984.PubMedGoogle Scholar
  5. 5.
    Ebert, T.J.; Smith, J.J.; Barney, J.A.; Merrill, D.C.; Smith, G.K. The use of thoracic impedance for determining thoracic blood volume changes in man. Aviat. Sp. Environ. Med. 57:49–53; 1986.Google Scholar
  6. 6.
    Frey, M.A.B.; Doerr, B.M. Correlations between ejection times measured from the carotid pulse contour and the impedance cardiogram. Aviat. Sp. Environ. Med. 54:894–897; 1983.Google Scholar
  7. 7.
    Gollan, F.; Kizakevich, P.N.; McDermott, J. Continuous electrode monitoring of systolic time intervals during exercise. Brit. Heart J. 40:1390–1396; 1978.PubMedGoogle Scholar
  8. 8.
    Harris, W.S. Systolic time intervals in the noninvasive assessment of left ventricular performance in man. In: Mirsky, I.; Ghista, D.N.; Sandler, H., eds. Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. New York: John Wiley; 1974: 233–292.Google Scholar
  9. 9.
    Hill, D.W.; Merrifield, A.J. Left ventricular ejection and the heather index measured by non-invasive methods during postural changes in man. Acta Anaesth. Scand. 20:313–320; 1976.PubMedGoogle Scholar
  10. 10.
    Kubicek, W.G.; Ramos, M.U.; Patterson, R.P.;et al. The Minnesota impedance cardiograph—theory and applications. Biomed. Eng. 9;410–416; 1974.PubMedGoogle Scholar
  11. 11.
    Lewis, R.P.; Leighton, R.F.; Forester, W.F.; Weissler, A.M. Systolic time intervals. In: Weissler, A.M., ed. Noninvasive Cardiology. New York: Stratton and Grune; 1974; 301–368.Google Scholar
  12. 12.
    Mancini, R.; Kottke, F.J.; Patterson, R.; Kubicek, W.;et al. Cardiac output contractility indices. Arch. Phys. Med. Rehab. 60:567–573; 1979.Google Scholar
  13. 13.
    Miyamoto, Y.; Higuchi, J.; Abe, Y.;et al. Dynamics of cardiac output and systolic time intervals in supine and upright exercise. J. Appl. Physiol. 55:1674–1681; 1983.PubMedGoogle Scholar
  14. 14.
    Muzi, M.; Ebert, T.J.; Tristani, F.E.; Jeutter, D.C.; Barney, J.A.; Smith, J.J. Determination of cardiac output using ensemble-averaged impedance cardiograms. J. Appl. Physiol. 58:200–205; 1985.PubMedGoogle Scholar
  15. 15.
    Pigott, V.M.; Spodick, D.W.; Rectra, E.H.;et al. Circulatory responses to exercise. Am. Heart J. 82:632–641; 1971.PubMedGoogle Scholar
  16. 16.
    Ramos, M.U.; LeBree, J.W.; Remole, W.; Kubicek, W.G. Transthoracic electrical impedance: A clinical guide of pulmonary fluid accumulation. Minn. Med. 58:671; 1975.PubMedGoogle Scholar
  17. 17.
    Sheps, D.S.; Petrovick, M.L.; Kizakevich, et al. Continuous noninvasive monitoring of ventricular function with impedance cardiography. Am. Heart J. 103:519–524; 1982.CrossRefPubMedGoogle Scholar
  18. 18.
    Smith, J.J.; Bush, J.E.; Wiedmeier, V.T.; Tristani, F.E. Application of impedance cardiography to study of postural stress. J. Appl. Physiol. 29:133–137; 1970.PubMedGoogle Scholar
  19. 19.
    Smith, J.J.; Porth, C.J.; Reinke, J.A.; Ebert, T.J.; Tristani, F.E. Impedance derived cardiac indices in coronary heart disease. Physiologist 20:88; 1977.Google Scholar
  20. 20.
    Smith, J.J.; Kampine, J.P. Circulatory physiology—The essentials, 2nd ed. Baltimore: William and Wilkins; 1984.Google Scholar
  21. 21.
    Smith, J.J.; Muzi, M.; Ebert, T.J.; Kircher, J.J.; Barney, J.A. Impedance cardiography and circulatory response to stress. Proc. 10th Int. Conference, Engineering in Medicine and Biology Soc., IEEE, Chap. 2566, 8/88, 0000–0766; 1988.Google Scholar
  22. 22.
    Spodick, D.H.; Meyer, M.; St. Pierre, J.R. Effect of upright tilt on the phases of the cardiac cycle in normal subjects. Cardiovasc. Res. 5:210–214; 1971.PubMedGoogle Scholar
  23. 23.
    Van de Water, J.M.; Mount, B.E.; Barela, J.R.;et al. Monitoring the chest with impedance. Chest 64:597; 1973.PubMedGoogle Scholar
  24. 24.
    Wolfe, L.A.; Cunningham, D.A.; Davis, G.M.;et al. Reliability of non-invasive methods for measuring cardiac function in exercise. J. Appl. Physiol. 44:55–58; 1978.PubMedGoogle Scholar
  25. 25.
    Xenakis, A.P.; Quarry, V.M.; Spodick, D.H. Immediate cardiac response to exercise. Am. Heart J. 89:178–185; 1975.CrossRefPubMedGoogle Scholar

Copyright information

© Pergamon Press plc 1989

Authors and Affiliations

  • James J. Smith
    • 1
    • 2
  • Michael Muzi
    • 1
    • 2
  • Jill A. Barney
    • 1
    • 2
  • Jeff Ceschi
    • 1
    • 2
  • John Hayes
    • 1
    • 2
  • Thomas J. Ebert
    • 1
    • 2
  1. 1.Human Performance LaboratoryVeterans Administration Medical CenterMilwaukee
  2. 2.Department of PhysiologyMedical College of WisconsinMilwaukee

Personalised recommendations