Skip to main content
Log in

The fractal random telegraph signal: Signal analysis and applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A random telegraph signal is a time series whose value S(t) at time t is either one of only two possible values. Many processes including chemical reactions, cell membrane ion channels, and electronic noise generate such signals. Usually, Markov models have been used to model and analyze such data. Instead, we present a new fractal random telegraph signal that is statistically self-similar in time. We show how to analyze such signals and apply those techniques to study burst noise in a defective operational amplifier and ion currents recorded through individual ion channels in a cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

proportionality constant in the power lawk=At 1−D

A c :

proportionality constant for entering the closed state

A o :

proportionality constant for entering the open state

c (subscript):

closed level of the two state (open-closed) signal

D :

fractal dimension

D c :

fractal dimension associated with entering the closed state

D o :

fractal dimension associated with entering the open state

f(t) :

probability density of the durationst in a state

k :

transition rate (probability per unit time) of exiting a state

k eff :

effective transition rate measured at time scalet eff

k c(eff) :

effective transition rate for entering the closed state

k o(eff) :

effective transition rate for entering the open state

o (subscript):

open level of the two state (open-closed) signal

P(t) :

cumulative probability distribution of the durationst in a state

S(t) :

signal level at timet

t :

time

t eff :

effective time scale at which a measurement is done

X(t) :

state at timet

References

  1. Bergquist, J.C.; Hulet, R.G.; Itano, W.M.; Wineland, D.J. Observation of quantum jumps in a single atom. Phys. Rev. Lettr. 57:1699–1702; 1986.

    CAS  Google Scholar 

  2. Blatz, A.L.; Magleby, K.L. Correcting single channel data for missed events. Biophys. J. 49:967–980; 1986.

    CAS  PubMed  Google Scholar 

  3. Brown, S.R.; Scholz, C.H. Broadband study of the topography of natural rock surfaces. J. Geophys. Res. 90:12575–12582; 1985.

    Google Scholar 

  4. Card, W.H.; Chaudhari, P.K. Characteristics of burst noise. Proc. IEEE 53:652–653; 1965.

    Google Scholar 

  5. Cox, D.R. Renewal Theory. London; Science Paperbacks; 1962.

    Google Scholar 

  6. Dewdney, A.K. Of fractal mountains, graftal plants and other computer graphics at Pixar. Sci. Amer. 1986 Dec. pp. 14–20.

  7. Eykholt, R.; Umberger, D.K. Characterization of fat fractals in nonlinear dynamical systems. Phys. Rev. Lettr. 57:2333–2336; 1986.

    Google Scholar 

  8. Hille, B. Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer; 1984.

    Google Scholar 

  9. Howard, R.E.; Jackel, L.D.; Mankiewich, P.M.; Skocpol, W.J. Electrons in silicon microstructures. Science 231:346–349; 1987.

    Google Scholar 

  10. Hsu, S.T.; Whittier, R.J.; Mead, C.A. Physical model for burst noise in semiconductor devices. Solid State Electron. 13:1055–1071; 1970.

    Google Scholar 

  11. Itano, W.M.; Bergquist, J.C.; Wineland, D.J. Laser spectroscopy of trapped atomic ions. Science 237:612–617; 1987.

    CAS  Google Scholar 

  12. Koniarek, J.P.; Markowitz, G.D.; Liebovitch, L.S.; Fischbarg, J. Single channel recordings from rabbit corneal endothelium in vitro.Biophys. J. 49:365a; 1986.

    Google Scholar 

  13. Liebovitch, L.S.; Buisman, H.P. Single channel-like electronic artifact recorded from patch clamp amplifiers. Biophys. J. 53:265a; 1988.

    Google Scholar 

  14. Liebovitch, L.S.; Fischbarg, J.; Koniarek, J.P. Optical correlation functions applied to the random telegraph signal: how to analyze patch clamp datawithout measuring the open and closed times. Math. Biosci. 78:203–215; 1986.

    Article  Google Scholar 

  15. Liebovitch, L.S.; Fischbarg, J.; Koniarek, J.P. Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84:37–68; 1987.

    Article  Google Scholar 

  16. Liebovitch, L.S.; Fischbarg, J.; Koniarek, J.P.; Todorova, I.; Wang M. Fractal model of ion-channel kinetics. Biochim. Biophys. Acta 896:173–180; 1987.

    CAS  PubMed  Google Scholar 

  17. Liebovitch, L.S.; Sullivan, J.M. Fractal analysis of a voltage dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J. 52:979–988; 1987.

    CAS  PubMed  Google Scholar 

  18. Machlup, S. Noise in semiconductors: spectrum of a two parameter random signal. J. Appl. Phys. 25:341–343; 1954.

    Article  Google Scholar 

  19. Mandelbrot, B.B. The Fractal Geometry of Nature. San Francisco: W.H. Freeman; 1983.

    Google Scholar 

  20. Nagourney, W.; Sandberg, J.; Dehmelt, H. Shelved optical electron maplifier: observation of quantum jumps. Phys. Rev. Lettr. 56:2797–2799; 1986.

    CAS  Google Scholar 

  21. Papoulis, A. Probability, Random Variables, and Stochastic Processes. New York: McGraw Hill; 1985.

    Google Scholar 

  22. Ralls, K.S.; Skocpol, W.J.; Jackel, L.D.; Howard, R.E.; Fetter, L.A.; Epworth, R.W.; Tennant, D.M. Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lettr. 52:228–231; 1984.

    CAS  Google Scholar 

  23. Rice, S.O. Mathematical analysis of random noise, Wax, N., ed. In: Selected Papers on Noise and Stochastic Processes. New York: Dover; 1954; pp. 176–181.

    Google Scholar 

  24. Sakmann, B.; Neher, E., editors. Single Channel Recording. New York: Plenum; 1983.

    Google Scholar 

  25. Sander, L.M. Fractal growth. Sci. Amer. 1987 Jan., pp. 94–100.

  26. Sauter, T.; Neuhauser, W.; Blatt, R.; Toschek, P.E. Observation of quantum jumps. Phys. Rev. Lettr. 57:1696–1698; 1986.

    CAS  Google Scholar 

  27. Shlesinger, M.F. Williams-Watts dielectric relaxation: a fractal time stochastic process. J. Stat. Phys. 36:639–648; 1984.

    Article  Google Scholar 

  28. Stanley, H.E.; Ostrowsky, N., editors. On Growth and Form—Fractal and Non-Fractal Patterns in Physics. Boston: Martinus Nijhoff; 1986.

    Google Scholar 

  29. Stein, W.D. Transport and Diffusion across Cell Membranes. New York: Academic Press; 1986.

    Google Scholar 

  30. Sullivan, J.M. A voltage- and calcium-sensitive inward rectifying potassium channel active in the resting membrane of cultured mouse hippocampal neurons. Biophys. J. 51:54a, 1987.

    Google Scholar 

  31. Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66:80–85; 1970.

    CAS  Google Scholar 

  32. Youschkevitch, A.A., Markov, Andrei Andreevich. In: Gillispie, C.C., ed. Dictionary of Scientific Biography. New York: Charles Scribner's Sons; 1974, Vol. IX, pp. 124–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebovitch, L.S. The fractal random telegraph signal: Signal analysis and applications. Ann Biomed Eng 16, 483–494 (1988). https://doi.org/10.1007/BF02368011

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368011

Keywords

Navigation