Journal of Mathematical Sciences

, Volume 77, Issue 5, pp 3458–3462 | Cite as

Green functions of a quasi-static problem

  • V. N. Tereshchenko


In this paper Green functions are constructed in analytic form for a deformable half-plane of a quasi-static problem of thermoelasticity when the heat flow on the boundary x2=0 of the half-plane is zero. To construct the Green functions, certain integral representations are used whose kernels are known Green functions of the corresponding problems of elasticity theory. The functions constructed make it possible to obtain a wide class of new solutions of boundary-value problems of thermoelasticity, in particular solutions for a piecewise homogeneous half-plane. Bibliography: 6 titles.


Heat Flow Green Function Integral Representation Analytic Form Wide Class 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Novacki,Problems of Thermoelasticity [in Russian], Acad. Sci. USSR Pulblishers, Moscow (1962).Google Scholar
  2. 2.
    V. Novacki,Elasticity Theory [in Russian], Mir, Moscow (1975).Google Scholar
  3. 3.
    E. Melan and H. Parkus,Wãrmespannungen infolge stationãrer Temperaturfelder, Springer-Verlag, Wien (1953).Google Scholar
  4. 4.
    H. Parkus,Instationãre wãrmespannungen, Springer-Verlag, Wien (1959).Google Scholar
  5. 5.
    J. N. Goodier, “On the Integration of the Thermoelastic Equations,”Phil. Mag.,7, No. 23 (1937).Google Scholar
  6. 6.
    I. I. Privalov,Introduction to the Theory of Functions of Comples Variable [in Russian], Nauka, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. N. Tereshchenko

There are no affiliations available

Personalised recommendations