Skip to main content

Advertisement

Log in

Oxidative stress in gastric mucosal injury: Role of platelet-activating factor-activated granulocytes

  • Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Temporal and spatial changes due to oxidative stress in the rat gastric mucosa were visualized and quantified during the process of mucosal hemorrhagic change. The fluorescence associated with dichlorofluorescein (DCF), a hydroperoxide-sensitive fluorochrome, increased 30 min after repeated electrical stimuli to the gastric artery. The increase in the fluorescence was enhanced in the area between two adjacent collecting venules. The content of plateletactivating factor (PAF), the activity of myeloperoxidase (MPO) in the gastric mucosa, the area of mucosal lesions, and the luminol-dependent chemiluminescence activity in zymosan-treated blood samples, obtained from the gastric vein, were measured and found to increase significantly 30 min after the stimuli. The intravenous injection of CV-6209, a PAF antagonist, 5 min prior to the stimuli significantly inhibited the DCF activation, the increases in PAF level and MPO activity, the mucosal hemorrhagic change, and the elevation in chemiluminescence activity. In addition, continuous infusion of superoxide dismutase also inhibited all these changes, except for chemiluminescence activity. These results suggest that oxygen radicals derived from PAF-activated granulocytes induce oxidative stress, and that oxidative changes are actually implicated in the pathogenesis of gastric mucosal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granger DN, Benoit JN, Suzuki M, et al. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol 1989;257 (Gastrointest Liver Physiol 20):G683-G688.

    CAS  PubMed  Google Scholar 

  2. Grisham MB, Granger DN. Neutrophil-mediated mucosal injury: Role of reactive oxygen metabolites. Dig Dis Sci 1988; 33:6S-15S.

    Article  CAS  PubMed  Google Scholar 

  3. Kvietys PR, Twohig B, Danzell J, et al. Ethanol-induced injury to the rat gastric mucosa. Role of neutrophils and xanthine oxidase-derived radicals. Gastroenterology 1990;98:909–920.

    CAS  PubMed  Google Scholar 

  4. Smith SM, Holm-Rutili L, Perry MA, et al. Role of neutrophils in hemorrhagic shock-induced gastric mucosal injury in the rat. Gastroenterology 1988;93:466–471.

    Google Scholar 

  5. Vedder NB, Winn RK, Rice CL, et al. A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 1988;81:939–944.

    CAS  PubMed  Google Scholar 

  6. Suematsu M, Kurose I, Asako H, et al. In vivo visualization of oxyradical-dependent photoemission during endothelium-granulocyte interaction in microvascular beds treated with platelet-activating factor. J Biochem 1989;106:355–361.

    CAS  PubMed  Google Scholar 

  7. Suzuki M, Asako H, Kubes P, et al. Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 1991;42:125–138.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh M, Guth PH. Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology 1985;88:1162–1167.

    CAS  PubMed  Google Scholar 

  9. Kurose I, Suematsu M, Miura S, et al. Involvement of superoxide anion and platelet-activating factor in increased tissue-type plasminogen activator during rat gastric microvascular damage. Thromb Res 1991;62:241–248.

    Article  CAS  PubMed  Google Scholar 

  10. Kurose I, Miura S, Fukumura D, et al. Role of platelet-activating factor in fibrinolytic activation in the pathogenesis of gastric mucosal damage induced by endothelin-1. Gut 1992;33:868–871.

    CAS  PubMed  Google Scholar 

  11. Wallace JL, Keeman CM, Granger DN. Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophildependent process. Am J Physiol. 1990;259(Gastrointest Liver Physiol 22):G462-G467.

    CAS  PubMed  Google Scholar 

  12. Kubes P, Suzuki M, Granger DN. Platelet-activating factorinduced microvascular dysfunction: Role of adherent leukocytes. Am J Physiol 1990;258(Gastrointest Liver Physiol 21):G158-G163.

    CAS  PubMed  Google Scholar 

  13. Kurose I, Fukumura D, Miura S, et al. Fluorographic study on oxidative stress in the process of gastric mucosal injury—attenuating effect of vitamin E. J Gastroenterol Hepatol 1993; 8:254–258.

    CAS  PubMed  Google Scholar 

  14. Kurose I, Saito H, Suematsu M, et al. Kupffer cell-mediated oxidative stress in colon cancer cell line visualized by digital imaging fluorescence microscopy. Cancer Lett 1991;59:201–209.

    Article  CAS  PubMed  Google Scholar 

  15. Suematsu M, Kato S, Ishii H, et al. Intralobular heterogeneity of carbon tetrachloride-induced oxidative stress in perfused rat liver visualized by digital imaging fluorescence microscopy. Lab Invest 1991;64:167–173.

    CAS  PubMed  Google Scholar 

  16. Miura S, Suematsu M, Tanaka S, et al. Microcirculatory disturbance in indomethacin-induced intestinal ulcer. Am J Physiol 1991;261(Gastrointest Liver Physiol 24):G213-G219.

    CAS  PubMed  Google Scholar 

  17. Suematsu M, Oshio C, Miura S, et al. Luminol-dependent photoemission from single neutrophil stimulated by phorbol ester and calcium ionophore: Role of degranulation and myeloperoxidase. Biochem Biophys Res Commun 1988;155:106–111.

    Article  CAS  PubMed  Google Scholar 

  18. Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 1986;251(Gastrointest Liver Physiol 14):G567-G574.

    CAS  PubMed  Google Scholar 

  19. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917.

    CAS  PubMed  Google Scholar 

  20. Cathcart R, Schwiers E, Ames BN. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 1983;134:111–116.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki M, Suematsu M, Miura S, et al. Neutrophil-mediated oxidative stress during acute gastric mucosal injury. In: Hayaishi O, Niki E, Kondo M, Yoshikawa T (eds.) Medical, biochemical, and chemical aspects of free radicals. Amsterdam: Elsevier, 1989;1433–1436.

    Google Scholar 

  22. Lynch JM, Henson PM. The intracellular retention of newly synthesized platelet-activating factor. J Immunol 1986;137:2653–2661.

    CAS  PubMed  Google Scholar 

  23. Lewis MS, Whatley RE, Cain P, et al. Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest 1988;82:2045–2055.

    CAS  PubMed  Google Scholar 

  24. Suzuki M, Inauen W, Kvietys PR, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 1989;257(Heart Circ Physiol 26):H1740-H1745.

    CAS  PubMed  Google Scholar 

  25. Skoglund G, Cotgreave I, Ricon J, et al. H2O2-activated CD11b/CD18-dependent cell adhesion. Biochem Biophys Res Commun 1988;157:443–449.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumura, D., Kurose, I., Miura, S. et al. Oxidative stress in gastric mucosal injury: Role of platelet-activating factor-activated granulocytes. J Gastroenterol 30, 565–571 (1995). https://doi.org/10.1007/BF02367780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367780

Key words

Navigation