Skip to main content

Advertisement

Log in

Direct observation of microcirculation of the basal region of rat gastric mucosa

  • Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

We modified and improved techniques for the intravital microscopic observation of the rat gastric microcirculation. The stomach of anesthetized rats was cut along the greater curvature, and the posterior wall of the glandular stomach was fixed in a chamber with the serosal side up and perfused with warmed Tyrode's solution. A portion of the muscularis externa was resected with the serosa to make an observation window. Vascular casts were studied histologically after the injection of Monastral blue B gelatin solution. Vascular casts revealed that most of the microvasculature observed in the window was not located in the submucosa, but in the basal part of the mucosa. Microscopic observation showed that the basal mucosal arterioles branched to form the mucosal capillaries, and the collecting venules from the mucosal surface were seen in cross-sections to drain into the venules located in the basal mucosa, without penetrating the muscularis mucosae. Topical application of acetylcholine (0.03–10μM) to the window dilated the arterioles, and topical application of epinephrine (0.03–3μM) constricted them dose-dependently without affecting the collecting venules and the venules. This method made possible the direct observation of the microvasculature in the basal mucosa of the stomach, in which common microvessel characteristics were shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guth PH, Leung, FW. Physiology of the gastric circulation. In: Johnson LR (ed.) Physiology of the gastrointestinal tract. 2nd ed. New York: Raven, 1987;1031–1053.

    Google Scholar 

  2. Oates PJ. Gastric blood flow and mucosal defense. In: Hollander D, Tamawski AS (eds) Gastric cytoprotection. A clinician's guide. New York: Plenum, Medical, 1989;125–165.

    Google Scholar 

  3. Jacobson ED. Circulatory mechanisms of gastric mucosal damage and protection. Gastroenterology 1992;102:1788–1800.

    CAS  PubMed  Google Scholar 

  4. Whittle BJR. Neuronal and endothelium-derived mediators in the modulation of the gastric microcirculation: Integrity in the balance. Br J Pharmacol 1993;110:3–17.

    CAS  PubMed  Google Scholar 

  5. Konturek SJ, Konturek JW. Gastric adaptation: Basic and clinical aspects. Digestion 1994;55:131–138.

    CAS  PubMed  Google Scholar 

  6. Sato N, Kamada T, Schichiri M, et al. Measurement of hemoperfusion and oxygen sufficiency in gastric mucosa in vivo. Gastroenterology 1979;76:814–819.

    CAS  PubMed  Google Scholar 

  7. Murakami M, Moriga M, Miyake T et al. Contact electrode method in hydrogen gas clearance technique: A new method for determination of regional gastric mucosal blood flow in animals and humans. Gastroenterology 1982;82:457–467.

    CAS  PubMed  Google Scholar 

  8. Saita H, Murakami M, Seki M, et al. Evaluation of the measurement of gastric mucosal blood flow by laser Doppler velocimetry in rat (abstract). Gastroenterology 1984;86:1228.

    Google Scholar 

  9. Guth PH, Rosenberg A. In vivo microscopy of gastric microcirculation. Dig Dis 1972;17:391–397.

    CAS  Google Scholar 

  10. Holm-Rutili L, Öbrink KJ. Rat gastric mucosal microcirculation in vivo. Am J Physiol 1985;248:G714-G746.

    Google Scholar 

  11. Rosenberg A, Guth PH. A method for in vivo study of the gastric microcirculation. Microvasc Res 1970;2:111–112.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki Y, Ueno A, Kawamura M, et al. Prostaglandin levels in the rat resting gastric wall and enhancement of prostaglandin E2 generation after administration of mild hyperosmotic saline solution into the gastric lumen. Eicosanoids 1990;3:23–27.

    CAS  PubMed  Google Scholar 

  13. Guth PH, Smith E. Histamine receptors in the gastric microcirculation. Gut 1978;19:1059–1063.

    CAS  PubMed  Google Scholar 

  14. Guth PH, Moler TL. The role of endogenous prostanoids in response of the rat gastric microcirculation to vasoactive agents. Microvasc Res 1982;23:336–346.

    Article  CAS  PubMed  Google Scholar 

  15. Whittle BJR, Orene-Wolman N, Guth PH. Gastric vasoconstrictor actions of leukotriene C4, PGF2α, and thromboxane mimetic U-46619 on rat submucosal microcirculation in vivo. Am J Physiol 1985;248:G580-G586.

    CAS  PubMed  Google Scholar 

  16. Whittle BJR, Morishita T, Ohya Y, et al. Microvascular actions of platelet-activating factor on rat gastric mucosa and submucosa. Am J Physiol 1986;251:G772-G778.

    CAS  PubMed  Google Scholar 

  17. Chen RYZ, Li D-S, Guth, PH. Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation. Am J Physiol 1992;262:H1350-H1355.

    CAS  PubMed  Google Scholar 

  18. Bou-Abboud CF, Wayland H, Paulsen G, et al. Microcirculatory stasis precedes tissue necrosis in ethanol-induced gastric mucosal injury in the rat. Dig Dis Sci 1988;33:872–877.

    Article  CAS  PubMed  Google Scholar 

  19. Oates PJ, Hakkinenn JP. Studies on the mechanism of ethanol-induced gastric damage in rats. Gastroenterology 1988;94:10–21.

    CAS  PubMed  Google Scholar 

  20. Yonei Y, Guth PH. Ethanol-induced gastric injury. Role of submucosal venoconstriction and leukotrienes. Dig Dis Sci 1991;36:601–608.

    Article  CAS  PubMed  Google Scholar 

  21. Duling BR. The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc Res 1973; 5:423–429.

    CAS  PubMed  Google Scholar 

  22. Shishido M, Katori M. A quantitative method using continuous recording of platelet thrombus size in hamster cheek pouch. Microvasc Res 1981;22:199–209.

    Article  CAS  PubMed  Google Scholar 

  23. Nagai K, Katori M. Possible changes in the leukocyte membrane as a mechanism of leukocyte adhesion to the venular walls induced by leukotriene B4 and fMLP in the microvasculature of the hamster cheek pouch. Int J Microcire: Clin Exp 1988;7:305–314.

    CAS  Google Scholar 

  24. Oda T, Katori M. Inhibition site of dexamethasone on extravasation of polymorphonuclear leukocytes in the hamster cheek pouch microcirculation. J Leuk Biol 1992;52:337–342.

    CAS  Google Scholar 

  25. Tsuchihashi Y. Studies on structure and function of the mucosal microvascular system of the gastrointestinal tract with special reference to their relation to epithelial functions (in Japanese with English abstract). Kyoto Furitsu Ika Daigaku Zasshi (J Kyoto Pref Univ Med) 1983;92:59–81.

    Google Scholar 

  26. Murai S, Kitajima S, Nakajima T, et al. Vasculature of the rat stomach. In special relation to the muscularis mucosae (in Japanese with English abstract). Myakkangaku (J Jpn Coll Angiol) 1993;33:511–523.

    Google Scholar 

  27. Gannon B, Browning J, O'Brien P. The microvascular architecture of the glandular mucosa of rat stomach. J Anat 1982;135:667–683.

    CAS  PubMed  Google Scholar 

  28. Gannon B, Browning J, O'Brien P, et al. Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology 1984;86:866–875.

    CAS  PubMed  Google Scholar 

  29. Hase T, Moss BJ. Microvascular changes of gastric mucosa in the development of stress ulcer in rats. Gastroenterology 1973; 65:224–234.

    CAS  PubMed  Google Scholar 

  30. Ohtsuka A, Ohtani O. The microvascular architecture of the rabbit stomach corpus in vascular corrosion casts. Scanning Electron Microsc 1984;4:1951–1956.

    Google Scholar 

  31. Raschke M, Lierse H, van Ackeren H. Microvascular architecture of the mucosa of the gastric corpus in man. Acta Anat 1987;130:185–190.

    CAS  PubMed  Google Scholar 

  32. Imada M, Tatsumi H, Fujita H. Scanning electron microscopy of vascular architecture on the gastric mucosa of the golden hamster. Cell Tissue Res 1987;250:287–293.

    Article  CAS  PubMed  Google Scholar 

  33. Prokopiw I, Hynna-Liepert TT, Dinda PK, et al. The microvascular anatomy of the canine stomach. Gastroenterology 1991; 100:638–647.

    CAS  PubMed  Google Scholar 

  34. Morishita T, Guth PH. Vagal nerve stimulation causes noncholinergic dilatation of gastric arterioles. Am J Physiol 1986;250:G660-G664.

    CAS  PubMed  Google Scholar 

  35. Guth PH, Smith E. Vasoactive agents and gastric microcirculation. Microvasc Res 1974;8:125–131.

    Article  CAS  PubMed  Google Scholar 

  36. Katori M, Nishiyama K, Ueno A, et al. Possible role of endogenous prostaglandins against ethanol injury in rat stomach. J Clin Gastroenteral 1990;12[Suppl 1]:S25-S31.

    Google Scholar 

  37. Katori M, Nishiyama K, Ueno A, et al. An important role of leukotriene C4 in microcirculation during ethanol-induced gastric mucosal injury in rat. Adv Prostaglandin Thromboxane Leukotriene Res 1990;21:771–776.

    Google Scholar 

  38. Katori M, Ohno T, Nishiyama K. Interaction of substance P and leukotriene C4 in ethanol-induced mucosal injury of rat stomach. Regul Pept 1993;46:241–243.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, T., Katori, M., Nishiyama, K. et al. Direct observation of microcirculation of the basal region of rat gastric mucosa. J Gastroenterol 30, 557–564 (1995). https://doi.org/10.1007/BF02367779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367779

Key words

Navigation