Skip to main content
Log in

Evaluation of regional load in acute ischemia by three-dimensional curvatures analysis of the left ventricle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Geometric remodeling of the left ventricle (LV) following myocardial infarction and ischemic insult is associated with myocardial load redistribution. Regional curvatures based on 3-D reconstructions of the LV are used to calculate the regional loads. The technique uses surface normals to derive local circumferential and meridional curvatures. Following the validation of the procedure on simple geometric shapes, the effect of acute ischemia on the regional load redistribution was studied in six open chest dogs. Short axis magnetic resonance imaging (MRI) scans were used to reconstruct end-diastolic (ED) and end-systolic (ES) LV images by applying our helical shape descriptor, before and after acute coronary occlusion. Regional curvatures as well as local wall thickness by the volume element method were calculated before and after acute ischemia, and were used to approximate regional loads, by a regional stress index (σ/P). Postmortem evaluation using monastral blue staining was used to divide each LV to normal (NZ), ischemic (IZ), and border (BZ) zones in the ischemic case, and to the anatomically matched regions in the preischemic LVs. Ischemia affects the local curvatures and loads both at ED and ES. at ED, σ/P rose significantly only in the IZ. Similarly, at ES, the highest increase in load was detected in the IZ, but increases in circumferential and meridional load were seen in all regions. Identifying the load redistribution following acute ischemia helps delineate the mechanisms affecting geometric LV remodeling following myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akima, H. A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Machinery 17:589–602; 1970.

    Google Scholar 

  2. Akima, H. A method of bivariate interpolation and smooth surface fitting based on local procedures. Communications of the ACM 17(1):18–31; 1974.

    Google Scholar 

  3. Azhari, H.; Grenadier, E.; Dinnar, U.; Beyar, R.; Adam, D.; Marcus, M.; Sideman, S. Quantitative characterization and sorting of three-dimensional geometries: Application to left ventriclesin vivo. IEEE Trans. Biomed. Eng. 36:322–332; 1989.

    CAS  PubMed  Google Scholar 

  4. Azhari, H.; Sideman, S.; Weiss, J.L.; Shapiro, E.P. Weisfeldt, M.L.; Graves, W.L.; Rogers, W.J.; Beyar, R. Threedimensional mapping of acute ischemic regions from magnetic resonance images: Wall thickness versus motion analysis. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1492-H1503; 1990.

    CAS  PubMed  Google Scholar 

  5. Beyar, R.; Shapiro, E.P.; Graves, W.L.; Rogers, W.J.; Guier, W.H.; Zerhouni, E.A.; Soulen, R.; Weisfeldt, M.L. Quantification and validation of left ventricular wall thickening by a three-dimensional volume element magnetic resonance imaging approach. Circulation. 81(1):297–307; 1990.

    CAS  PubMed  Google Scholar 

  6. Goben, D.K.; Robinowitz, S.A.; Needleman, A.; McMahon, T.A.; Abelmann, W.H. A analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res. 47:728–741; 1980.

    Google Scholar 

  7. Borow, K.M.; Green, L.H.; Grossman, W.; Braunwald, E. Left ventricular end-systolic stress-shortening and stresslength relations in humans. Am. J. Cardiol. 50:1301–1308; 1982.

    Article  CAS  PubMed  Google Scholar 

  8. do Carmo, M.P. Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1976: pp. 16–150.

    Google Scholar 

  9. Edwards, C.H. II; Rankin, J.S.; McHale, P.A.; Ling, D.; Anderson, R.W. Effects of ischemia on left ventricular regional function in the conscious dog. Am. J. Physiol. 240:H413-H420; 1981.

    PubMed  Google Scholar 

  10. Gallagher, K.P.; Gerren, R.A.; Stirling, M.C.; Choy, M.; Dysko, R.L.; McManimas, S.P.; Dunham, W.R. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ. Res. 58(4):570–583; 1986.

    CAS  PubMed  Google Scholar 

  11. Ginzton, L.E.; Lobodzinski, S.; Thigpen, T.; Laks, M.M. Microcomputer measurement of two-dimensional echocar-diographic rest and exercise end-systolic left ventricular circumferential regional wall stress. IEEE 276:99–102; 1987.

    Google Scholar 

  12. Goto, Y.; Igarashi, Y.; Yamada, O.; Hiramori, K.; Suga, H. Hyperkinesis without Frank-Starling mechanism in a nonischemic region of acutely ischemic excised canine heart. Circulation 77:468–477; 1988.

    CAS  PubMed  Google Scholar 

  13. Hamid, M.S.; Ghista, D.N. Finite element analysis of human cardiac structures. In: Pulmano, V.A.; Kabailo, A.P., eds. Finite element methods in engineering. Australia: University of New South Wales; 1974: pp. 337–348.

    Google Scholar 

  14. Heikkila, J.; Tabakin, B.S.; Hugenholtz, P.G. Quantification of function in normal and infarcted regions of the left ventricle. Cardiovasc. Res. 6:516–531; 1972.

    CAS  PubMed  Google Scholar 

  15. Hutchins, G.M.; Bulkley, B.H.; Moore, G.W.; Piasio, M.A.; Lohr, F.T. Shape of the human cardiac ventricles. Am. J. Cardiol. 41:646–654; 1978.

    CAS  PubMed  Google Scholar 

  16. Janz, R.F.; Waldron, R.J. Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ. Res. 42:255–263; 1978.

    CAS  PubMed  Google Scholar 

  17. Janz, R.F. Estimation of local myocardial stress. Am. J. Physiol. 242:H875-H881; 1982.

    CAS  PubMed  Google Scholar 

  18. Laskey, W.K.; Reichek, N.; Sutton, M.S.-J.; Untereker, W.J.; Hirshfeld, J.W. Matching of myocardial oxygen consumption to mechanical load in human left ventricular hypertrophy and dysfunction. JACC 3:291–300; 1984.

    CAS  PubMed  Google Scholar 

  19. Lessick, J. The characterization and analysis of regional three-dimensional geometry and function in normal and diseased left ventricles. Haifa, Israel: Technion-IIT; 1990. D.Sc. Thesis.

    Google Scholar 

  20. Lessick, J.; Sideman, S.; Azhari, H.; Marcus, M.; Grenadier, E.; Beyar, R. Regional three-dimensional geometry and function of left ventricles with fibrous aneurisms, a cinecomputed tomography study. Circulation 84:1072–10861; 1991.

    CAS  PubMed  Google Scholar 

  21. Lima, J.A.C.; Becker, L.C.; Melin, J.A., Lima, S., Kallman, C.A.; Weisfeldt, M.L.; Weiss, J.L. Impaired thickening of nonischemica myocardium during acute regional ischemia in the dog. Circulation 71:1048–1059; 1985.

    CAS  PubMed  Google Scholar 

  22. Mancini, G.B.; DeBoe, S.F.; Anselmo, E.; Simon, S.B.; LeFree, M.T., Vogel, R.A. Quantitative regional curvature analysis: An application of shape determination for the assessment of segmental left ventricular function in man. Am. Heart J. 113:326–334; 1987.

    CAS  PubMed  Google Scholar 

  23. Marcus, E.; Lorente, P.; Barta, E.; Beyar, R.; Adam, D.; Sideman, S. A comparative study of quantitative methods for characterization of left ventricular contraction. In: Computers in cardiology. Washington DC: IEEE Computer Society Press; 1985: pp. 145–148.

    Google Scholar 

  24. Nakano, K.; Sugawara, M.; Tamiya, K.; Satomi, G.; Koyanagi, H. A new approach to defining regional work of the ventricle and evaluating regional cardiac function: Mean wall stress—Natural logarithm of reciprocal of wall thickness relationship. Heart and Vessels 2:74–80; 1986.

    Article  CAS  PubMed  Google Scholar 

  25. Osakada, G.; Hess, O.M; Gallagher, K.P.; Demper, W.S.; Ross, J. Jr. End-systolic dimensional-wall thickness relations during myocardial ischemia in conscious dogs: A new approach for defining regional function. Am. J. Cardiol. 51:1750–1758; 1983.

    Article  CAS  PubMed  Google Scholar 

  26. Panda, S.; Natarjan, R. Finite-element method of stress analysis in the human left ventricular layered wall structure. Med. & Biol. Eng. & Comput. 15:61–71; 1977.

    Google Scholar 

  27. Pao, V.C.; Ritman, E.L.; Wood, E.H. Finite element analysis of left ventricular myocardial stresses. J. Biomech. 7:305–318; 1974.

    Article  Google Scholar 

  28. Pfeffer, M.; Braunwald, E. Ventricular remodeling after myocardial infarction. Circulation 181(4):1161–1172; 1990.

    Google Scholar 

  29. Reichek, N. Wilson, J.; Sutton, M.S.-J.; Plappert, T.A.; Goldberg, S.; Hirshfeld, J.W. Noninvasive determination of left ventricular end-systolic stress: Validation of the method and initial application. Circulation 65:99–108; 1982.

    CAS  PubMed  Google Scholar 

  30. Ritman, E.L. Left ventricular function and myocardial contractility. Proc. Mayo Clinic 50:147–156; 1975.

    CAS  Google Scholar 

  31. Shapiro, E.P.; Buchalter, M.B.; Rogers, W.J.; Zerhouni, E.A.; Buier, W.H.; Weiss, J.L. LV twist is greater with inotropic stimulation and less with regional ischemia. Circulation (Supp. II) 78:II-4666; 1988.

    Google Scholar 

  32. Shapiro, E.P.; Roger, W.H.; Beyar, R.; Soulen, R.L.; Zerhouni, E.A.; Lima, J.A.C.; Weiss, J.L. Determination of left ventricular mass by magnetic resonance imaging in hearts deformed by acute infarction. Circulation 79706–711; 1989.

    CAS  PubMed  Google Scholar 

  33. Streeter, D.D. Jr. Gross morphology and fiber geometry of the heart. In: Berne, R.M.; Sperelakis, N.S.; Geiger, S.R., eds. Handbook of physiology. Section 2, the CVS, Vol. 1. The heart. Bethesda, MD: The American Physiology Soc.; 1979: pp. 61–112.

    Google Scholar 

  34. Sugawara, M.; Tamiya, K.; Nakano, K. Regional work of the ventricle: Wall tension-area relation. Heart & Vessels 1:133–144; 1985.

    CAS  Google Scholar 

  35. Tsujioka, K.; Ogasawara, O.; Mito, K.; Haramatsu, O.; Wada, Y.; Goto, M.; Matsuoka, S.; Kagiyama, M.; Kajiya, F. Piezoelectric polymer curvature sensor for measurement of regional curvature radius of LV wall Am. J. Physiol. (Heart Circ. Physiol. 23):254:H1010-H1016; 1988.

    CAS  PubMed  Google Scholar 

  36. Weisman, H.F.; Bush, D.E.; Mannisi, J.A.; Bulkley, B.H. Global cardiac remodeling after acute myocardial infarction: A study in the rat model. JACC 5:1355–1362; 1985.

    CAS  PubMed  Google Scholar 

  37. Yettram, A.L.; Vinson, C.A.; Gibson, D.G. Influence of the distribution of stiffness in the human left ventricular myocardium on shape change in diastole. Med. & Biol. Eng. & Comput. 17:553–562; 1979.

    CAS  Google Scholar 

  38. Yin, F. Ventricular wall stress. Circ. Res. 49:929–942; 1981.

    Google Scholar 

  39. Zerhouni, E.A.; Parish, D.M.; Rogers, W.J.; Yang, A.; Shapiro, E.; Human heart: Tagging with MRI imaging—A method for noninvasive assessment of myocardial motion. Radiology 169:59–63; 1988.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessick, J., Sideman, S., Azhari, H. et al. Evaluation of regional load in acute ischemia by three-dimensional curvatures analysis of the left ventricle. Ann Biomed Eng 21, 147–161 (1993). https://doi.org/10.1007/BF02367610

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367610

Keywords

Navigation