Skip to main content
Log in

Incorporating vessel taper and compliance properties in Navier-Stokes based blood flow models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A popular and useful technique used to model blood flow in cardiovascular simulations is to divide each blood vessel into a series of segments, each with its own lumped resistance, intertance, and compliance parameters. The values of these parameters are usually obtained through a simplification of the Navier-Stokes equations for fluid flow. However, the simplification often ignores the nonlinear and convective terms of the equations, resulting in errors in the parameter values, especially in the value found for resistance per unit length. We report a new method for the calculation of vessel resistance per unit length which takes into account the effects of vessel taper and wall compliance. It is shown that these effects can be addressed by the addition of two time-varying terms to the calculation of resistance per unit length. One term, due to vessel taper, is proportional to volumetric flow rateQ. The other term, due to vessel compliance, is proportional to ∂p/∂t. These variables are readily available in computer simulations of blood flow in lumped parameter systems. Using data for the descending aorta, the new parameter values, when averaged over a cardiac cycle, compare favorably with results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

i:

class number of parent element

j:

class number of daughter element

k :

branching number

m :

daughter element number at one branching

n :

number of pathlength group

z :

generation number

d z,i :

diameter of zth-generation and i-class element

len(i):

length of i-class element

N i,j :

observed number of j-class from i-class

Nt:

total number of branching

N el(i):

element number of i-class element

N tr(i):

tree number of i-class element

TNEEt :

total number of the exits of the model of tree

TNEE(n):

total number of the exit elements of group-n

R:

resistance

Rp:

peripheral resistance from one exit to left atrium

Rt:

total resistance from the entrance to left atrium

Rt(n):

Rt when the Rp ofn-group is infinite

Rc:

the imaginary resistance of the model of tree

C 1(n):

the imaginary conductance of one exit vessel of n-group

r :

random disit

E i,j :

the matrix of mathematical expectation of branching

a :

coefficient of becoming narrow

References

  1. Barnea, O.; Moore, T.W.; Dubin, S.E.; Jaron, D.. Cardiac energy considerations during intraaortic balloon pumping. IEEE Trans. Biomed. Eng BME 37(2):170–181; 1990.

    CAS  Google Scholar 

  2. Fitch, S.; Welkowitz, W.; Hilton, R. Pulsatile blood flow in the aorta. ASME Biomedical Fluid Mechanics Symposium, Denver, CO; 1966: pp. 34–44.

  3. Fry, D.L.. The measurement of pulsatile blood flow by the computed pressure gradient technique. IRE Trans. Med. Elect. ME-6:259–264; 1959.

    Google Scholar 

  4. Fry, D.L.; Griggs, Jr., D.M.; Greenfield, Jr., J.C.In vivo studies of pulsatile blood flow: The relationship of the pressure gradient to blood velocity. In: Attinger, E.O., ed. Pulsatile blood flow. New York: McGraw-Hill; 1964: pp. 101–114.

    Google Scholar 

  5. Fry, D.L.; Mallos, A.J.; Casper, A.G.T. A catheter tip method for measurement of the instantaneous aortic blood velocity. Circ. Res. 9:627–634; 1956.

    Google Scholar 

  6. Imaeda, K.; Goodman, F.O.. Analysis of nonlinear pulsatile blood flow in arteries. J. Biomechanics 13(12):1007–1022; 1980.

    CAS  Google Scholar 

  7. Jager, G.N.; Westerhof, N.; Noordergraaf, A. Oscillatory flow impedance in electrical analog of arterial system. Circ. Res. 16(1):121–133; 1965.

    CAS  PubMed  Google Scholar 

  8. Jaron, D.; Moore, T.W.; Bai, J. Cardiovascular responses to acceleration stress: A computer simulation. IEEE Proc. 76(6):700–707; 1988.

    Article  Google Scholar 

  9. Johnson, G.A.; Hung, T.-K.; Brant, A.M.; Borovetz, H.S. Experimental determination of wall shear rate in canine carotid arteries perfusedin vivo. J. Biomech. 22(11/12): 1141–1150; 1989.

    CAS  PubMed  Google Scholar 

  10. Ling, S.C.; Atabek, H.B. A nonlinear analysis of pulsatile flowin vivo. J. Fluid Mech 55(3):493–512; 1972.

    Google Scholar 

  11. Ling, S.C.; Atabek, H.B.; Letzing, W.G.; Patel, D.J. Nonlinear analysis of aortic flow in living dogs. Circ. Res. 33(2):198–212; 1973.

    CAS  PubMed  Google Scholar 

  12. McDonald, D.A. Blood flow in arteries. London: Edward Arnold; 1974.

    Google Scholar 

  13. Melbin, J.; Noordergraaf, A. Pressure gradient related to energy conversion in the aorta. Circ. Res. 52(2):143–150; 1983.

    CAS  PubMed  Google Scholar 

  14. Misra, J.C.; Singh S.I. A study of the nonlinear flow of blood through arteries. Bull. Math. Biol. 49(3):257–277; 1987.

    Article  CAS  PubMed  Google Scholar 

  15. Moore, T.W.; Jaron, D.; Chu, C.-L.; Dinnar, U.; Hrebien, L.; White, M.J.; Hendler, E.; Dubin, S.E. Synchronized external pulsation for improved tolerance to acceleration stress: Model studies and preliminary experiments. IEEE Trans. Biom. Eng. BME-32(2):158–165; 1985.

    CAS  Google Scholar 

  16. O'Rourke, M.F.; Taylor, M.G. Vascular impedance of the femoral bed. Circ. Res. 18:126–139; 1966.

    Google Scholar 

  17. Patel, D.J.; DeFreitas, F.M.; Greenfield, Jr., J.C.; Fry, D.L. Relationship of radius to pressure along the aorta in living dogs. J. Appl. Physiol. 18(6):1111–1117; 1963.

    CAS  PubMed  Google Scholar 

  18. Rideout, V.C.; Dick, D.E. Difference-differential equations for fluid flow in distensible tubes. IEEE Trans. Biom. BME- 14(3):171–177; 1967.

    CAS  Google Scholar 

  19. Schneck, D.J.; Ostrach, S. Pulsatile blood flow in a channel of small exponential divergence—1: The linear approximation for low mean Reynolds number. J. Fluid Eng. 97:353–360; 1975.

    Google Scholar 

  20. Strano, J.J.; Welkowitz, W.; Fish, S. Measurements utilization ofin vivo blood pressure transfer functions of dog and chicken aortas. IEEE Trans. Biomed. Eng. BME-19(4): 261–271; 1972.

    CAS  Google Scholar 

  21. Tsangaris, S.; Drikakis, D. Pulsating blood flow in an initially stressed, anisotropic elastic tube: Linear approximation of pressure waves. Med. & Biol. Eng. & Comput. 27(1):82–88; 1989.

    CAS  Google Scholar 

  22. Westerhof, N.; Bosman, F.; DeVries, C.J.; Noordergraaf, A. Analog studies of the human systemic arterial tree. J. Biomech. 2(2):121–143; 1969.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, GF., Moore, T.W. & Jaron, D. Incorporating vessel taper and compliance properties in Navier-Stokes based blood flow models. Ann Biomed Eng 21, 97–106 (1993). https://doi.org/10.1007/BF02367605

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367605

Keywords

Navigation