Skip to main content
Log in

Signal analysis of noninvasive Xenon-133 cerebral blood flow measurements

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An anatomical model in conjunction with experimentally determined absorption data provides a framework to simulate signals as obtained from the noninvasive Xenon-133 cerebral blood flow technique. The contribution of individual tissue compartments to the total signal as well as the effect on the computed results were investigated under normal conditions. The introduction of physiological abnormalities into the model allowed the determination of sensitivity of the technique with respect to size, position, and perfusion level of the lesion. In addition, effects of cross-talk between hemispheres and signal overlap of adjacent detectors were quantified. It was found that the change of externally measured blood flow is proportional to the decrement/increment of flow in the lesion. Contrary to earlier reports, the effects of cross-talk and signal overlap were not found to be serious limitations in identifying lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attig, E.; Capon, A.; Dmeurisse, G., Vernas, M. Remote effect of deep-seated vascular brain lesions on cerebral blood flow. Stroke 21:1555–1561; 1990.

    CAS  PubMed  Google Scholar 

  2. Bolmsjo, M. Hemisphere cross-talk and signal overlapping in bilateral cerebral blood flow measurements using Xenon-133. Eur. J. Nucl. Med. 9:1–5; 1984.

    CAS  PubMed  Google Scholar 

  3. Copp, D.H.; Shim, S.S. Extraction ratio and bone clearance of Sr-85 as a measure of effective bone blood flow. Circulation Research 16:461–467; 1964.

    Google Scholar 

  4. Donley, R.F.; Sundt, T.M.; Anderson, R.E.; Sharbrough, F.W. Blood flow measurements and the “look through” artefact in focal cerebral ischemia. Stroke 6:121–131; 1975.

    CAS  PubMed  Google Scholar 

  5. Evans, R.D. The atomic nucleus. New York: McGraw-Hill; 1955: pp. 785–818.

    Google Scholar 

  6. Gambarelli, J.; Guerinel, L.; Chevrot, L.; Mattei, M. Computerized axial tomography. Berlin: Springer Verlag; 1977

    Google Scholar 

  7. Gur, D.; Yonas, H.; Wolfson, S.K.; Herbert, D.; Kennedy, W.H.; Drayer, B.P.; Shabason, L. Xenon and iodine enhanced cerebral CT: A closer look. Stroke 12:573–577; 1981.

    CAS  PubMed  Google Scholar 

  8. Gur, R.C.; Gur, R.E.; Obrist, W.D.; Hungerbuhler, J.P.; Younkin, D.; Rosen, A.D.; Skolnick, B.E.; Reivich, M. Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science 217:659–661; 1982.

    CAS  PubMed  Google Scholar 

  9. Hojer-Pedersen, E.; Petersen, O.F.; Changes of blood flow in the cerebral cortex after subcortical ischemic infarction. Stroke 20:211–216; 1989.

    CAS  PubMed  Google Scholar 

  10. Holzman, G.B.; Wagner, H.N.; Iio, M.; Rabinowitz, D.; Zierler, K.L. Measurement of muscle blood flow in the human forearm with radioactive krypton and xenon. Circulation 30:27–34; 1964.

    CAS  PubMed  Google Scholar 

  11. Jaggi, J.L. Analysis of the spatial resolution of noninvasive Xenon-133 cerebral blood flow measurements. Philadelphia: University of Pennsylvania; 1985. Dissertation.

    Google Scholar 

  12. Jaggi, J.L.; Obrist, W.D. Regional cerebral blood flow determined by133Xenon clearance. In: Wood, J.H., ed. Cerebral blood flow: Physiological and clinical aspects. New York: McGraw-Hill; 1987: pp. 189–201.

    Google Scholar 

  13. Kappers, C.U.A. The relative weight of the braincortex in human races and in some animals and the asymmetry of the hemispheres. J. Nerv. Ment. Disease 64:113–124; 1926.

    Google Scholar 

  14. Kety, S.S. Theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3:1–41; 1951.

    CAS  PubMed  Google Scholar 

  15. Landau, W.M.; Freygang, W.H.; Rowland, L.P.; Sokoloff, L.; Kety, S.S. The local circulation of the living brain: Values in the unanesthetized and anaesthetized cat. Trans. Am. Neurol. Assoc. 80:125–129; 1955.

    Google Scholar 

  16. Lassen, N.A. Basic principles of CBF measurement by Xenon-133 and external recording by multiple stationary detectors. In: Knezevic, S.; Maximilian, V.A.; Mubrin, Z.; Prohovnik, I.; Wade, J., eds. Handbook of regional Cerebral Blood Flow. Hillsdale, NJ: Erlbaum Associates; 1988: pp. 25–35.

    Google Scholar 

  17. Meric, P.; Seylaz, J. Radiation scattering and the determination of regional cerebral blood flow by radioisotope clearance. Med. Prog. Technol. 5:41–46; 1977.

    CAS  PubMed  Google Scholar 

  18. Obrist, W.D.; Thompson, H.K.; King, H.C.; Wang, H.S. Determination of regional cerebral blood flow by inhalation of 133-Xenom. Circ. Res. 10:124–135; 1967.

    Google Scholar 

  19. Obrist, W.D.; Thompson, H.K.; Wang, H.S.; Wilkinson, W.E. Regional cerebral blood flow estimated by 133-Xenon inhalation. Stroke 6:245–256; 1975.

    CAS  PubMed  Google Scholar 

  20. Obrist, W.D.; Wilkinson, W.E. The noninvasive Xe-133 method: Evaluation of CBF indices. In: Bes, A.; Geraud, G., eds. Cerebral circulation. Amsterdam: Excerpta Medica; 1980: pp. 119–124.

    Google Scholar 

  21. Obrist, W.D.; Wilkinson, W.E. Regional cerebral blood flow measurement in humans by Xenon-133 clearance. Cerebrovasc. Brain Metab. Rev. 2:283–327; 1990.

    CAS  PubMed  Google Scholar 

  22. Obrist, W.D.; Wilkinson, W.E.; Wang, H.S.; Harel, D. The noninvasive Xe-133 method: Influence of the input function on computed rCBF values. In: Knezevic, S.; Maximilian, V.A.; Mubrin, Z.; Prohovnik, I.; Wade, J., eds. Handbook of regional cerebral blood flow. Hillsdale, NJ: Erlbaum Associates; 1988: pp. 37–50.

    Google Scholar 

  23. Olsen, S.T.; Larsen, B.; Skriver, E.B.; Herning, M.; Enevoldsen, E.; Lassen, N.A. Focal cerebral ischemia measured by the intra-arterial 133-Xenon method. Stroke 12:736–744; 1981.

    Google Scholar 

  24. Paulson, O.B.; Cronquist, S.; Risberg, J.; Jeppesen, F.I. Regional cerebral blood flow: A comparison of 8-detector and 16-detector instrumentation. J. Nuc. Med. 10:164–173; 1968.

    Google Scholar 

  25. Potchen, E.J.; Davis, E.O.; Wharton, T.; Hill, R.; Taveras, J.M. Regional cerebral blood flow in man. I. A. study of the Xenon-133 washout method. Arch. Neurol. 20:378–383; 1969.

    CAS  PubMed  Google Scholar 

  26. Reivich, M. Observations on exponential models of cerebral clearance curves. In: Meyer, J.S.; Lechner, H.; Eichhorn, O. eds. Research on the cerebral circulation. Sprinfield: Ch. Thomas; 1969: pp. 135–144.

    Google Scholar 

  27. Risberg, J. Development of high-resolution two-dimensional measurement of regional cerebral blood flow. In: Wade, J.; Knezevic, S.; Maximilian, V.A.; Mubrin, Z.; Prohovnik, I., eds. Impact of functional imaging in neurology and psychiatry. London: John Libbey; 1987: pp. 35–43.

    Google Scholar 

  28. Sejrsen, P. Cutaneous blood flow in man studies by freely diffusible radioactive indicators. Scan. J. Clin. Lab. Invest. (Suppl 99):52–59; 1967.

    Google Scholar 

  29. Veall, N.; Mallett, B.L. The partition of trace amount of Xenon between human blood and brain tissue at 37 C. Phys. Med. Biol. 10:375–380; 1965.

    Article  CAS  Google Scholar 

  30. Wyper, D.J.; Cooke, M.B.D. Compensating for hemisphere cross-talk when measuring CBF. Acta Neurol. Scan. 56 Supp 64):470–471; 1984.

    Google Scholar 

  31. Yeh, S.Y. Peterson, R.E. Solubility of krypton and xenon in blood, protein solutions, and tissue homogenates. J. Appl. Physiol. 20:1041–1047; 1965.

    CAS  PubMed  Google Scholar 

  32. Yurgutis, A.A. Linear dimensions and indices of the human brain. In: Blinkov, S.M.; Glezer, S.M., eds. The human brain in figures and tables. New York: Plenum Press; 1968: p. 333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaggi, J.L., Obrist, W.D. & Noordergraaf, A. Signal analysis of noninvasive Xenon-133 cerebral blood flow measurements. Ann Biomed Eng 21, 85–95 (1993). https://doi.org/10.1007/BF02367604

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367604

Keywords

Navigation