Skip to main content
Log in

A dynamic nonlinear lumped parameter model for skeletal muscle circulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A dynamic nonlinear lumped parameter model of the circulation of skeletal muscle for constant vasoactive state is presented. This model consists of four compartments that represent the large arteries, the arterioles, the capillaries and venules, and the veins, respectively. The first compartment consists of a linear compliance (C1) and resistance (R1). The third compartment possesses no compliance and is represented by a linear resistance (R3). The second and fourth compartments each consist of a nonlinear pressure-volume relation, resulting in a pressure dependent compliance (C2, C4, respectively) and nonlinear resistance (R2, R4, respectively). The eleven model parameters were collected in a complementary way: they were partly obtained from a priori knowledge including, information at the microscopic level, and partly determined by means of an estimation algorithm. Estimated values of the compliances (in cm3·kPa−1·100 g−1, 1kPa=7.5 mmHg) and resistances (in kPa·s·cm−3·100 g) at an (arterial) inflow pressure of 10 kPa and a (venous) outflow pressure of 0 kPa were: C1: 0.014; R1: 6.6; C2: 0.565; R2: 84.6; R3: 37.9; C4: 1.044; R4: 24.5. The model (with the nonlinear pressure-volume relations) is able to predict the static and dynamic instantaneous (i.e., for constant vasomotor tone) pressure-flow relation and the instantaneous zero flow pressure intercept. These phenomena are therefore not necessarily the result of the rheological properties of blood. The secondary or delayed dilatation upon a positive inflow pressure step (or negative step in venous pressure) is predicted by the model implying that delayed dilatation is not necessarily related to changes in vasomotor tone. Venous outflow delay, upon a positive inflow pressure step (starting from zero flow), is also predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

slope ofP-V relation atV 0

C :

compliance (dV/dP)

D :

diameter

F :

flow

F in :

input (arterial) flow, model

R out :

output (venous) flow, model

F p :

input (arterial) flow, measurements

F v :

output (venous) flow, measurements

i :

generation number

K :

8νπL 3

K eff :

effective value ofK

L :

length

N :

number of vessels

P :

pressure

P in :

input (arterial) pressure, model

P out :

output (venous) pressure, model

P 0a :

apparent zero flow pressure intercept

P 0i :

instantaneous zero flow pressure intercept

P 0s :

steady state zero flow pressure intercept

P p :

perfusion (arterial) pressure, measurements

P v :

output (venous) pressure, measurements

R :

resistance

t :

time

V :

volume

V 0 :

half maximal volume of compartment

V 0ef :

half effective maximal volume of compartment

W :

working point

ν:

viscosity

τ:

time constant

References

  1. Baez, S. Response characteristics of perfused microvessels. Angiology 12:452–461; 1961.

    CAS  PubMed  Google Scholar 

  2. Baker, C.H.; Davis, D.L. Isolated skeletal muscle blood flow and volume changes during contractile activity. Blood Vessels 11:32–44; 1974.

    CAS  PubMed  Google Scholar 

  3. Baker, C.H.; Menninger, R.P.; Schoen, R.E.; Truitt Sutton, E. Skeletal muscle vascular volume changes with increased venous pressure. Blood Vessels 13:222–237; 1976.

    CAS  PubMed  Google Scholar 

  4. Best, M.; Blumenthal, M.; Masket, S.; Galin, M.A. Effects of sympathetic stimulation on critical closure of intraocular blood vessels. Invest. Ophthalmol. 9:911–916; 1970.

    CAS  PubMed  Google Scholar 

  5. Braakman, R.; Sipkema, P.; Westerhof, N.. Steady state and instantaneous pressure-flow relationships: characterization of the canine iliac periphery. Cardiovasc. Res. 17:577–588; 1983.

    CAS  PubMed  Google Scholar 

  6. Braakman, R. Pressure-flow relationships in skeletal muscle. From measurement to model. Amsterdam: Free University; 1988. Dissertation.

    Google Scholar 

  7. Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J.A.E. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Bas. Res. in Cardiol. 83:510–524; 1988.

    CAS  Google Scholar 

  8. Cox, R.H. Arterial wall mechanics and composition and the effects of smooth. Am. J. Physiol. 229: 807–812; 1975.

    CAS  PubMed  Google Scholar 

  9. Duling, B.R.; Sarelius, I.G.; Jackson, W.F. A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow. Int. J. Microcirc. Clin. Exp. 1: 409–424; 1982.

    CAS  PubMed  Google Scholar 

  10. Ehrlich, W.; Baer, R.W.; Bellamy, R.F.; Randazzo, R. Instantaneous femoral artery pressure-flow relations in supine anesthetized dogs and the effect of unilateral elevation of femoral venous pressure. Circ. Res. 47:88–98; 1980.

    CAS  PubMed  Google Scholar 

  11. Eng, C.; Kirk, E.S. Flow into ischemic myocardium and across coronary collateral vessels is modulated by a waterfall mechanism. Circ. Res. 55:10–17; 1984.

    CAS  PubMed  Google Scholar 

  12. Engelson, E.T.; Schmid-Schönbein, G.W.; Zweifach, B.W. The microvasculature in skeletal muscle. III Venous network anatomy in normotensive and spontaneously hypertensive rats. Int. J. Microcirc. 4:229–248; 1985a.

    CAS  Google Scholar 

  13. Engelson, E.T.; Skalak, T.C.; Schmid-Schönbein, G.W. The microvasculature in skeletal muscle. I. Arteriolar network in rat spinotrapezius muscle. Microvasc. Res. 30:29–44; 1985b.

    Article  CAS  PubMed  Google Scholar 

  14. Engelson, E.T.; Schmid-Schönbein, G.W.; Zweifach, B.W. The microvasculature in skeletal muscle II. Arteriolar network anatomy in normotensive and spontaneously hypertensive rats. Microvasc. Res. 31:356–374; 1986.

    Article  CAS  PubMed  Google Scholar 

  15. Eriksson, E.; Myrhage, R. Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol. Scand. 86:211–222; 1972.

    CAS  PubMed  Google Scholar 

  16. Ganong, W.F. Review of medical physiology. Los Altos, CA: Lange Medical Publications; 1985.

    Google Scholar 

  17. Greensmith, J.E.; Duling, B.R. Morphology of the constricted arteriolar wall: physiological implications. Am. J. Physiol. 247:H686-H698; 1984.

    Google Scholar 

  18. Graham, M.M. Model simplification: complexity versus reduction. Circulation 72 (Suppl. IV):63–68; 1985.

    Google Scholar 

  19. Hakim, T.S.; Michel, R.P.; Chang, H.K.. Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion. J. Appl. Physiol. 52:710–715; 1982.

    CAS  PubMed  Google Scholar 

  20. House, S.D.; Johnson, J.C. Microvascular pressure in venules of skeletal muscle during arterial pressure reduction. Am. J. Physiol. 250:H838-H845; 1986.

    CAS  PubMed  Google Scholar 

  21. Jones, R.D.; Berne, R.M., Autoregulation: Factors affecting vascular resistance in isolated, perfused skeletal muscle. In: Hudlicka, K., ed. Circulation in Skeletal Muscle. London: Pergamon Press; 1968.

    Google Scholar 

  22. Kajiya, F.; Tsujioka, K.; Goto, M.; Wada, Y.; Chen, X-L.; Nakai, M.; Tadaoka, S.; Hiramatsu, O.; Ogasawara, Y.; Mito, K.; Tomonaga, G. Functional characteristics of intramyocardial capacitance vessels during diastole in the dog. Circ. Res. 58:476–485; 1986.

    CAS  PubMed  Google Scholar 

  23. Langewouters, G.J.; Wesseling, K.H.; Goedhard, W.J.A. The static elastic properties of 45 human thoracic and 20 abdominal aortas and the parameters of a new model. J. Biomech. 17:425–435, 1984.

    Article  CAS  PubMed  Google Scholar 

  24. Lipowsky, H.H.; Kovalcheck, S.; Zweifach, B.W. The distribution of blood rheological parameters in the microvasculature of the cat mesentery. Circ. Res. 43:738–749; 1978.

    CAS  PubMed  Google Scholar 

  25. Marquardt, D.W. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441; 1963.

    Article  Google Scholar 

  26. Meninger, R.P.; Baker, C.H. Vascular and extravascular volume changes due to elevated venous pressure (38607). Proc. Soc. Exp. Biol. Med. 148:669–674; 1975.

    Google Scholar 

  27. Moreno, A.H.; Katz, A.L.; Gold, L.D.; Reddy, R.V., Mechanics of distension of dog veins and other very thin-walled tubular structures. Circ. Res. 27:1069–1080; 1970.

    CAS  PubMed  Google Scholar 

  28. Myrhage, R.; Eriksson, E. Arrangement of the vascular bed in different types of skeletal muscles. In: Hammersen, F.; Messmer, K., eds. Skeletal Muscle Microcirculation. Progr. Appl. Microcirc., Basel: Karger, Vol. 5 (1–4); 1984.

    Google Scholar 

  29. Nichol, J.; Girling, F.; Jerrard, W.; Claxton, E.B.; Burton, A.C. Fundamental instability of the small blood vessel and critical closing pressure in vascular beds. Am. J. Physiol. 164:330–344; 1951.

    CAS  PubMed  Google Scholar 

  30. Osol, G.; Halpern, W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am. J. Physiol. 249:H914-H921; 1985.

    CAS  PubMed  Google Scholar 

  31. Permutt, S.; Riley, R.L. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J. Appl. Physiol. 18:924–932; 1963.

    CAS  PubMed  Google Scholar 

  32. Saint-Felix, D.; Demoment, G. Pressure-flow relationship in the left canine coronary artery: study of linearity and stationarity using a time domain representation and estimation methods. Med. Biol. Eng. Comp. 10:231–239; 1982.

    Google Scholar 

  33. Salotto, A.G.; Muscurella, L.F.; Melbin, J.; Li, J.K.J.; Noordergraaf, A. Pressure pulse transmission into vascular beds. Microvasc. Res. 32:152–163; 1986.

    Article  CAS  PubMed  Google Scholar 

  34. Sato, T.; Yamashiro, S.M.; Grodins, F.S. Measurement of peripheral vascular properties by a frequency response methods. Am. J. Physiol. 220:1640–1650; 1971.

    CAS  PubMed  Google Scholar 

  35. Schmid-Schönbein, H. Critical closing pressure or yield shear stress as the cause of disturbed peripheral circulation? Acta Chirurgica Scan. Suppl. 465:10–19; 1976.

    Google Scholar 

  36. Schmid-Schönbein, G.W.; Firestone, G.; Zweifach, B.W. Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 23:34–49; 1986.

    PubMed  Google Scholar 

  37. Sherman, I.A. Interfacial tension effects in the microvasculature. Microvasc. Res. 22:296–307; 1981.

    Article  CAS  PubMed  Google Scholar 

  38. Sipkema, P.; Westerhof, N. Mechanics of a thin walled collapsible microtube. Ann. Biomed. Engng. 17:203–217; 1989.

    CAS  Google Scholar 

  39. Skalak, T.C. A mathematical hemodynamic network model of the microcirculation in skeletal muscle, using measures blood vessel distensibility and topology. San Diego, CA: University of California; 1984. PhD. dissertation.

    Google Scholar 

  40. Skalak, T.C.; Schmid-Schönbein, G.W. The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc. Res. 32:333–347; 1986.

    Article  CAS  PubMed  Google Scholar 

  41. Smiesko, V. Unidirectional rate sensitivity component in local control of vascular tone. Pfluegers. Arch, 327:324–336; 1971.

    CAS  Google Scholar 

  42. Sobin, S.S.; Fung, Y.C. Elasticity of the pulmonary alveolar sheet. Circ. Res. 30:451–469; 1972.

    PubMed  Google Scholar 

  43. Stoer, J.; Bulirsch, R. Introduction to numerical analysis. Berlin, Heidelberg: Springer Verlag, 2nd ed.; 1983.

    Google Scholar 

  44. Van Dijk, L.C.; Krams, R.; Sipkema, P.; Westerhof, N. Changes in the coronary pressure-flow relation after transition from blood to Tyrode perfusion. Am. J. Physiol. 255:H476-H482; 1988.

    PubMed  Google Scholar 

  45. Whittaker, S.R.F.; Winton, F.R. The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J. Physiol. 78:339–369; 1933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braakman, R., Sipkema, P. & Westerhof, N. A dynamic nonlinear lumped parameter model for skeletal muscle circulation. Ann Biomed Eng 17, 593–616 (1989). https://doi.org/10.1007/BF02367465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367465

Keywords

Navigation