Skip to main content
Log in

A systems theoretic approach to the study of CNS function

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a paradigm for using a general systems theoretic approach to study central nervous system function. Neuronal systems are conceptualized as consisting of different populations of neurons, each of which may be treated as a unit with its own dynamic properties. These dynamic properties of each population are determined by fundamental characteristics of its constituent neurons. Different populations interact with each other through the network structure in which they are embedded. We are modeling the linear and nonlinear properties of these systems using a theoretical framework based on two complementary approaches. First, a functional power series is used to characterize the input/output properties of the system. Second, a state-variable approach is used to characterize the internal structure and function of the system and to identify specific relationships among physiological variables.

We have extensively investigated the functional power series approach to study the cat somatosensory system and the rabbit hippocampal formation. Both of these systems exhibit nonlinear properties in their response to electrical stimulation, and these nonlinear properties are characterized by the high-order kernels of the functional power series. State-variable models are being formulated to map these input/output properties onto internal models of the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Petrov, B.; Csaki, F., editors. Budapest: Akademiai Kiado; 1973:267–281.

    Google Scholar 

  2. Akaike, H. A new look at statistical model identification. IEEE Automatic Control. 19:667–674; 1974.

    Google Scholar 

  3. Berger, T.W.; Eriksson, J.L.; Ciarolla, D.A.; Sclabassi, R.J. Nonlinear properties of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. J. Neurophysiol. 1988b.

  4. Berger, T.W.; Eriksson, J.L.; Ciarolla, D.A.; Sclabassi, R.J. Nonlinear properties of the hippocampal perforant path-dentate system. III. Comparison of random train and paired impulse analyses. J. Neurophysiol. 1988c.

  5. Berger, T.W.; Robinson, G.B.; Port, R.L.; Sclabassi, R.J. Nonlinear systems analysis of the functional properties of the hippocampal formation. Advanced Methods of Physiological System Modeling, Marmarelis, V.Z., ed. Los Angeles, CA: Biomedical Simulations Resource; 1987:73–103.

    Google Scholar 

  6. Berger, T.W.; Semple-Rowland, S.; Bassett, J.L. Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus. Brain Res. 215:329–336; 1981.

    Article  CAS  PubMed  Google Scholar 

  7. Berger, T.W.; Swanson, G.W.; Milner, T.A. Lynch, G.S.; Thompson, R.F. Reciprocal anatomical connections between hippocampus and subiculum: Evidence for subicular innervation of regio superior. Brain Res. 183:265–276; 1980.

    Article  CAS  PubMed  Google Scholar 

  8. Eykhoff, P. System Identification. Parameter and State Estimation. New York, NY: Wiley; 1974.

    Google Scholar 

  9. Krausz, J. Identification of nonlinear systems using random impulse train inputs. Biol. Cybernetics. 19:217–230; 1975.

    Google Scholar 

  10. Krieger, D.; Larimore, W. Automatic enhancement of single evoked potentials. Electroenceph. Clin. Neurophys. 64:568–572; 1986.

    CAS  Google Scholar 

  11. Larimore, W. Identification of non-linear systems using canonical variate analysis. To be presented at the 26th IEEE Conference on Decision and Control. Los Angeles, CA; December 1987.

  12. Larimore, W. System identification, reduced-order filtering and modeling via canonical variate analysis. Proceedings of the American Control Conference. New York, NY: IEEE, 1983:445–451.

    Google Scholar 

  13. Larimore, W.; Mahmood, S.; Mehra, R. Multivariable adaptive model algorithmic control. Proceedings of 23rd Conference on Decision and Control. Piscataway, NJ: IEEE: 1984:675–680.

    Google Scholar 

  14. Lee, Y.W.; Schetzen, M. Measurement of the kernels of a nonlinear system by cross-correlation. Int. J. Control. 2:237–254; 1965.

    Google Scholar 

  15. Ogura, H. Orthogonal functions of the Poisson process. IEEE Trans. Inform. Theory. IT-18:473–481; 1972.

    Google Scholar 

  16. Port, R.L.; Sclabassi, R.J.; Berger, T.W. Influence of contralateral hippocampus on nonlinear properties of perforant path-dentate synaptic transmission. Soc. Neurosci Abstr. 12:1378; 1986.

    Google Scholar 

  17. Rugh, W. Nonlinear System Theory: The Volterra/Wiener Approach. Baltimore, MD: The Johns Hopkins University Press; 1981:102–107.

    Google Scholar 

  18. Sclabassi, R.J. Neuronal models, spike trains, and the inverse problem. Mathematical Biosciences. 32:203–219; 1976.

    Article  Google Scholar 

  19. Sclabassi, R.J. A systems theoretic approach to the study of the somatosensory system. Evoked Potentials, Cracco, R.; Bodis-Wollner, I., New York, NY: Alan R. Liss, Inc. 1986; 1:35–44.

    Google Scholar 

  20. Sclabassi, R.J.; Eriksson, J.L.; Port, R.L.; Robinson, G.B.; Berger, T.W. Network properties of the hippocampal perforant path-dentate system. I. Theoretical and interpretational considerations. J. Neurophysiol 1988a.

  21. Sclabassi, R.J.; Hinman, C.L.; Kroin, J.S.; Risch, H. The modulatory effect of prior input upon afferent signals in the somatosensory system. Proc. IEEE Joint Autom. Control Conf. 2:787–795; 1977b.

    Google Scholar 

  22. Sclabassi, R.J.; Hinman, C.L.; Kroin, J.; Risch, H. A nonlinear analysis of afferent modulatory activity in the cat somatosensory system. Electroenceph. Clin. Neurophysiol. 60:444–454; 1985.

    CAS  Google Scholar 

  23. Sclabassi, R.J.; Krieger, D.N.; Berger, T.W. Nonlinear systems analysis of the somatosensory system. Advanced Methods of Physiological Modeling, Marmarelis, V.Z., ed. Los Angeles, CA: Biomedical Simulations Resources; 1987:104–127.

    Google Scholar 

  24. Sclabassi, R.J.; Kroin, J.; Hinman, C.L.; Risch, H. The effect of cortical ablation on modulatory activity in the cat somatosensory system. Electroenceph. Clin. Neurophysiol. 64:31–40; 1986.

    Article  CAS  PubMed  Google Scholar 

  25. Sclabassi, R.J.; Noreen, G.K. The characterization of dual-input evoked potentials as nonlinear systems using random impulse trains. Proc. Pittsburgh Modeling and Simulation Conf. 12:1123–1130; 1981.

    Google Scholar 

  26. Sclabassi, R.J.; Risch, H.; Hinman, C.L.; Kroin, J.S.; Enns, N.F.; Namerow, N.S. Complex pattern evoked somatosensory responses in the study of multiple sclerosis. Proc. IEEE. 65:626–633; 1977a.

    Google Scholar 

  27. Sutton, R.S.; Barto, A.G. Toward a modern theory of adaptive networks: Expectation and anticipation. Psych. Rev. 88:135–170; 1981.

    CAS  Google Scholar 

  28. Wiener, N. Nonlinear Problems in Random Theory, New York, NY: Wiley; 1958.

    Google Scholar 

  29. Zadeh, L.A. From circuit theory to system theory. Proc. IRE. 50:856; 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sclabassi, R.J., Krieger, D.N. & Berger, T.W. A systems theoretic approach to the study of CNS function. Ann Biomed Eng 16, 17–34 (1988). https://doi.org/10.1007/BF02367378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367378

Key words

Navigation