Algebra and Logic

, Volume 35, Issue 2, pp 105–119 | Cite as

Globalizing local actions of coalgebras

  • A. V. Sidorov


It is proved that any continuous weakly invertible local measuring of an algebra with a coalgebra extends to the global measuring of a quotient algebra. Also, any twisted measuring with an invertible cocycle is shown to be weakly invertible, and sufficient conditions are specified for pointed and connected algebras to have continuous measurings.


Mathematical Logic Continuous Measuring Local Action Local Measuring Global Measuring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Sidorov, “Quotient rings ofH-module algebras,”Bull. SMO, No. 1, 24–25 (1988).Google Scholar
  2. 2.
    A. V. Sidorov, “H-invariants for a maximal quotient ring,” inProc. Int. Conf. Algebra (Ring Theory), Novosibirsk (1989), p. 124.Google Scholar
  3. 3.
    J. Matczuk, “Centrally closed Hopf-module algebras,”Comm. Alg.,19, No. 7, 1909–1918 (1991).MATHMathSciNetGoogle Scholar
  4. 4.
    V. K. Kharchenko,Automorphisms and Derivations of Associative Rings, Kluwer, Dordrecht (1991).Google Scholar
  5. 5.
    D. A. Rumynin, “Maximal quotient algebra of a Hopf-module algebra,”Algebra Logika,32, No. 5, 556–570 (1993).MATHMathSciNetGoogle Scholar
  6. 6.
    W. Chin, “Crossed products and generalized inner actions of Hopf algebras,”Pacific J. Math.,150, No. 2, 241–258 (1991).MATHMathSciNetGoogle Scholar
  7. 7.
    S. Montgomery, “Biinvertible actions of Hopf algebras,”Israel J. Math.,83, 45–71 (1993).MATHMathSciNetGoogle Scholar
  8. 8.
    S. Montgomery and H.-J. Schneider, “Hopf crossed products, rings of quotients and prime ideals,”Adv. Math.,112, No. 1, 1–55 (1995).MathSciNetGoogle Scholar
  9. 9.
    D. A. Rumynin, “Twisted actions and quotient algebras,” forthcoming.Google Scholar
  10. 10.
    V. K. Kharchenko and A. Z. Popov, “Skew derivations of prime rings,” inInvestigations in Ring Theory, Vol. 16 [in Russian], Nauka, Novosibirsk (1989), pp. 183–195.Google Scholar
  11. 11.
    V. P. Elizarov, “Strong pretorsions and strong filters, modules, and quotient rings,”Sib. Mat. Zh.,14, No. 3, 549–559 (1973).MATHMathSciNetGoogle Scholar
  12. 12.
    B. Stenström,Rings and Modules of Quotients, Lect. Notes Math.,237, Springer-Verlag, Berlin (1971).Google Scholar
  13. 13.
    M. E. Sweedler,Hopf Algebras, Benjamin, New York (1969).Google Scholar
  14. 14.
    E. Abe,Hopf Algebras, Cambridge Univ., Cambridge (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. V. Sidorov

There are no affiliations available

Personalised recommendations