Journal of Mathematical Sciences

, Volume 94, Issue 1, pp 1073–1099 | Cite as

A finiteness theorem for subgroups of SP (4,Z)

  • L. A. Borisov


This paper proves that there are only finitely many subgroupsH of finite index in Sp(4,Z) such that coresponding quotient\(\mathcal{H}/H\) of the Siegel upper half space of rank two is not of general type.


General Type Half Space Finite Index Finiteness Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bolza, “On binary sextics with linear transformations into themselves,”Amer. J. Math.,10, 70 (1888).MathSciNetGoogle Scholar
  2. 2.
    H. Clemens, J. Kollár, and S. Mori, “Higher dimensional complex geometry”,Asterisque,166 (1988).Google Scholar
  3. 3.
    D. Eisenbud and M. Hochster, “A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions,”J. Algebra 58, No. 1, 157–161 (1979).MathSciNetGoogle Scholar
  4. 4.
    K. O’Grady, “On the Kodaira dimension of moduli spaces of abelian surfaces,”Compos. Math.,72, No. 2, 121–163 (1989).MathSciNetGoogle Scholar
  5. 5.
    V. Gritsenko, “Modular forms and moduli spaces of abelian andK3 surfaces,”Algebra Analiz,6, No. 6, 65–102 (1994).MATHMathSciNetGoogle Scholar
  6. 6.
    G. van der Geer, “Note on abelian schemes of level three,”Math. Ann.,278, Nos. 1–4, 401–408 (1987).MATHMathSciNetGoogle Scholar
  7. 7.
    G. van der Geer, “On the geometry of a Siegel modular threefold,”Math. Ann.,260, No. 3, 317–350 (1982).MATHMathSciNetGoogle Scholar
  8. 8.
    W. P. Hammond, “On the graded ring of Siegel modular forms of genus two,”Amer. J. Math.,87, No. 2, 502–506 (1965).MATHMathSciNetGoogle Scholar
  9. 9.
    K. Hulek and G. K. Sankaran, “The Kodaira dimension of certain moduli spaces of abelian surfaces,”Compos. Math.,90, No. 1, 1–35 (1994).MathSciNetGoogle Scholar
  10. 10.
    J.-I. Igusa, “A desingularization problem in the theory of Siegel modular functions,”Math. Ann.,168, 228–260 (1967).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    R. Lee, S. Weintraub, “An interesting algebraic variety,”Math. Intelligencer 8, No. 1, 34–39 (1986).MathSciNetGoogle Scholar
  12. 12.
    M. Reid, “Canonical threefolds,” in:Géometrie Algébrique, Angers. Sijthoff & Noordhoff (1980), pp. 273–310.Google Scholar
  13. 13.
    B. Teissier,Monômes, Volumes et Multiplicités. Introduction à la théorie des Singularités, II, Hermann, Paris (1988).Google Scholar
  14. 14.
    J. G. Thompson, “A finiteness theorem for subgroups of PSl(2,R) which are commensurable with PSl(2,Z),” In:Proc. Symp. Pure Math.,37 (1980), pp. 533–550.Google Scholar
  15. 15.
    T. Yamazaki, “On Siegel modular forms of degree two,”Amer J. Math.,98, No. 1, 39–53 (1976).MATHMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • L. A. Borisov

There are no affiliations available

Personalised recommendations