Helgoländer Meeresuntersuchungen

, Volume 46, Issue 4, pp 435–445 | Cite as

Mitochondrial ATPase in the gills of the shore crabCarcinus maenas

  • D. Siebers
  • J. Hentschel
  • K. Böttcher
  • C. Lucu


Posterior gills (No. 7 and 8) of shore crabsCarcinus maenas were homogenized and fractionated by means of differential and density gradient centrifugation. Employment of marker enzymes Na-K-ATPase and carbonic anhydrase for plasma membranes and cytochrome oxidase for mitochondria showed that these structural elements were separated. Ultramicroscopic investigations of combined fractions confirmed the presence of the respective mitochondrial and vesicular plasma membrane structures. An ATPase which did not depend on the presence of sodium (20 mM) ions in the incubation medium but on the presence of potassium (20 mM) ions only was found in the mitochondrial fractions. The mitochondrial ATPase was tightly bound to cellular particulates and activated approximately threefold by bicarbonate (20 mM) ions. The activity of this ATPase was nearly completely inhibited by oligomycin (1 μg ml−1) and greatly inhibited by low levels (5 mM) of thiocyanate and calcium ions, the Ki for Ca2+ being ca 4 mM. The results obtained confirm literature data on high mitochondrial densities in crab gills and allow the assumption of significant rates of energy metabolism in these organs. Considering its properties the mitochondrial ATPase is clearly distinct from crab gill Na-K-ATPase and can be measured specifically in samples containing Na-K-ATPase. Mitochondrial ATPase is therefore considered a suitable and reliable marker enzyme for mitochondria.


Carbonic Anhydrase Thiocyanate Incubation Medium Cytochrome Oxidase Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Burnett, L. E. & McMahon, B. R., 1985. Facilitation of CO2 excretion by carbonic anhydrase located in the surface of the basal membrane of crab gill epithelium. — Resp. Physiol.62, 341–348.Google Scholar
  2. Böttcher, K., Siebers, D., Becker, W. & Petrausch, G., 1991. Physiological role of branchial carbonic anhydrase in the shore crabCarcinus maenas. — Mar. Biol.,110, 337–342.CrossRefGoogle Scholar
  3. Bruns, W., Dermietzel, R. & Gros, G., 1986. Carbonic anhydrase in the sarcoplasmic reticulum of rabbit skeletal muscle. — J. Physiol.371, 351–364.PubMedGoogle Scholar
  4. Copeland, D. E. & Fitzjarrel, A. T., 1968. The salt-absorbing cells in the gills of the blue crab (Callinectes sapidus Rathbun) with notes on modified mitochondria. — Z. Zellforsch. mikrosk. Anat.92, 1–22.CrossRefPubMedGoogle Scholar
  5. Ebel, R. E. & Lardy, H. A., 1975. Stimulation of rat liver mitochondrial adenosine triphosphatase by anions. — J. biol. Chem.250, 191–196.PubMedGoogle Scholar
  6. Goodman, S. H. & Cavey, M. J., 1990. Organization of a phyllobranchiate gill from the green shore crabCarcinus maenas (Crustacea, Decapoda). — Cell Tissue Res.,260, 495–505.CrossRefGoogle Scholar
  7. Graszynski, K., 1970. Intrazelluläre Lokalisation von Enzymen des Flußkrebses. — Z. vergl. Physiol.66, 107–122.Google Scholar
  8. Kirschner, L. B., 1979. Control mechanisms of crustaceans and fishes. In: Mechanisms of osmoregulation in animals. Ed. by R. Gilles, Wiley, Chichester, 157–222.Google Scholar
  9. Kormanik, G. A. & Cameron, J. N., 1981. Ammonia excretion in animals that breath water: A review. — Mar. Biol. Lett.2, 11–23.Google Scholar
  10. Lardy, H., Reed, P. & Chiu Lin, C.-H., 1975. Antibiotic inhibitors of mitochondrial ATP synthesis. —Fedn Proc. Am. Socs exp. Biol.34, 1707–1710.Google Scholar
  11. Lucu, C., 1990. Ionic regulatory mechanisms in crustacean gill epithelia. — Comp. Biochem. Physiol.97A, 297–306.Google Scholar
  12. Maren, T. H., Ash, V. I. & Bailey, Jr., 1954. Carbonic anhydrase inhibition. — Bull. Johns Hopkins Hosp.95, 244–255.PubMedGoogle Scholar
  13. Maren, T. H., 1960. A simplified micro method for the determination of carbonic anhydrase and its inhibitors. — J. Pharmac. exp. Ther.130, 26–29.Google Scholar
  14. Oglesby, L. C., 1981. Volume regulation in aquatic invertebrates. — J. exp. Zool.215, 289–301.CrossRefGoogle Scholar
  15. Péqueux, A., Chapelle, S., Wanson, S., Goffinet, G. & Francois, C., 1983. (Na++K+) ATPase activity and phospholipid content of various fractions of the posterior gills ofCarcinus maenas andEriocheir sinensis. — Mar. Biol. Lett.4, 267–279.Google Scholar
  16. Perry, S. F. & Laurent, P., 1990. The role of carbonic anhydrase in carbon dioxide excretion, acidbase-balance and ionic regulation in aquatic gill breathers. In: Comparative Physiology. Ed. by R. K. H. Kinne, E. Kinne-Saffran & K. W. Beyenbach. Karger, Basel,2, 39–57.Google Scholar
  17. Siebers, D., Leweck, K., Markus, H. & Winkler, A., 1982. Sodium regulation in the shore crabCarcinus maenas as related to ambient salinity. — Mar. Biol.69, 37–43.CrossRefGoogle Scholar
  18. Siebers, D., Winkler, A., Leweck, K. & Madian, A., 1983. Regulation of sodium in the shore crabCarcinus maenas adapted to environments of constant and changing salinities. — Helgoländer Meeresunters.36, 303–312.Google Scholar
  19. Siebers, D., Petrausch, G. & Böttcher, K., 1990. Is there a chloride ATPase in the gills of the shore crabCarcinus maenas?. J. comp. Physiol. (B)160, 223–231.Google Scholar
  20. Towle, D. W., 1981. Na+-K+-ATPase in ionic regulation by marine and estuarine animals. — Mar. Biol. Lett.2, 107–121.Google Scholar
  21. Truchot, J. P., 1979. Mechanisms of the compensation of blood respiratory acid-base disturbances in the shore crab,Carcinus maenas (L.). — J. exp. Zool.210, 407–416.CrossRefGoogle Scholar
  22. Wharton, D. C. & Tzagoloff, A., 1967. Cytochrome oxidase from beef heart mitochondria. — Meth. Enzym.10, 245–250.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1992

Authors and Affiliations

  • D. Siebers
    • 1
  • J. Hentschel
    • 2
  • K. Böttcher
    • 1
  • C. Lucu
    • 3
  1. 1.Biologische Anstalt HelgolandHamburg 52Federal Republic of Germany
  2. 2.Fakultät für BiologieUniversität KonstanzKonstanz 1Federal Republic of Germany
  3. 3.Center for Marine ResearchRuder Boskovic InstituteBovinjCroatia

Personalised recommendations