Advertisement

Helgoländer Meeresuntersuchungen

, Volume 45, Issue 4, pp 423–443 | Cite as

A perforated gastrovascular cavity in the symbiotic deep-water coralLeptoseris fragilis: A new strategy to optimize heterotrophic nutrition

  • Dietrich Schlichter
Article

Abstract

The organization of the zooxanthellate scleractinian coralLeptoseris fragilis was studied. The architecture of the corallite and the histology of the polyparium were analysed for adaptations that enable efficient capture and retention of suspended particles which would increase energy supply. The data indicate that the gastrovascular system ofL. fragilis is not a blind but a flowthrough system. Water entering the coelenteron through the mouth leaves the body not only through the mouth but also through microscopic pores (≂ 1–2 μm) which are located near the crests of the sclerosepta in the oral epithelia. Irrigation is achieved by flagellar and probably also by muscular activity. This type of filtration enablesL. fragilis, which lacks tentacles, to utilize suspended organic material including bacteria. The supposed suspension feeding in combination with effective photoadaptations (presented in former communications) seems to be the basis for the survival ofL. fragilis in an extreme habitat (between-95 and-145 m) and for its, successful competion with other scleractinian species provided with larger catching surfaces, and with other invertebrates depending on filter feeding.

Keywords

Waste Water Water Pollution Organic Material Crest Energy Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abe, N., 1938. Feeding behaviour and the nematocyst ofFungia and 15 other species of corals. —Palao trop. biol. Stn Stud.1 (3), 469–522.Google Scholar
  2. Chevalier, J. P., 1987. Ordre des Scléractiniaires. In: Traité de zoologie. Ed. by P. P. Grassé. Masson, Paris, 498–539.Google Scholar
  3. Fricke, H. W. & Schuhmacher, H., 1983. The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). — Mar. Ecol. Prog. Ser.4, 163–194.Google Scholar
  4. Fricke, H. W., Vareschi, E. & Schlichter, D., 1987. Photoecology of the coralLeptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). — Oecologia73, 271–381.CrossRefGoogle Scholar
  5. Fricke, H. W., Kaiser, P. & Schlichter, D., 1992. Auto-heterotrophy inLeptoseris fragilis at the extreme limits of coral-algal photosynthesis. — Mar. Biol. (In press).Google Scholar
  6. Gladfelter, E. H., 1983. Circulation of fluids in the gastrovascular system of the reef coralAcropora cervicornis. — Biol. Bull. mar. biol. Lab., Woods Hole165, 619–636.Google Scholar
  7. Hoeksema, B. W., 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). — Zool. Verh., Leiden254, 1–295.Google Scholar
  8. Johannes, R. E., Coles, S. L. & Kuenzel, N. T., 1970. The role of zooplankton in the nutrition of some scleractinian corals. — Limnol. Oceanogr.15, 579–586.Google Scholar
  9. Le Tissier, M. D. A. A., 1990. The ultrastructure of the skeleton and skeletogenic tissues of the temperate coralCaryophyllia smithii. — J. mar. biol. Ass. U.K.70, 295–310.Google Scholar
  10. Lewis, J. B., 1976. Experimental tests of suspension feeding in Atlantic Reef Corals. — Mar. Biol.36, 147–150.CrossRefGoogle Scholar
  11. Lewis, J. B., 1977. Processes of organic production on coral reefs. — Biol. Rev.52, 305–347.Google Scholar
  12. Linley, E. A. S. & Koop, K., 1986. Sigmficance of pelagic bacteria as a trophic resource in a coral reef lagoon, One Tree Island, Great Barrier Reef. — Mar. Biol.92, 457–464.CrossRefGoogle Scholar
  13. Marshall, N., Durbin, A. G., Gerber, R. & Telek, G., 1975. Observations on particulate and dissolved organic matter in coral reef areas. — Int. Revue ges. Hydrobiol.60, 335–345.Google Scholar
  14. Mitskevich, I. N. & Kriss, A. E., 1982. Distribution of the number, biomass and production of microorganisms in the world ocean. — Int. Revue ges. Hydrobiol.67, 433–458.Google Scholar
  15. Moriarty, D. J. W., Pollard, P. C. & Hunt, W. G., 1985. Temporal and spatial variation in bacterial production in the water column over a coral reef. — Mar. Biol.85, 285–292.Google Scholar
  16. Patton, J. S., Abraham, S. & Benson, A. A., 1977. Lipogenesis in the intact coralPocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. — Mar. Biol.44, 235–247.CrossRefGoogle Scholar
  17. Pilkington, J. B., 1969. The organization of skeletal tissues in the spines ofEchinus esculentus. —J. mar. biol. Ass. U.K.49, 857–877.Google Scholar
  18. Rubenstein, D. I. & Koehl, M. A. R., 1977. The mechanisms of filter feeding: some theoretical considerations. — Am. Nat.111, 981–994.CrossRefGoogle Scholar
  19. Schlichter, D. & Kremer, B. P., 1985. Metabolic competence of endocytobiotic dinoflagellates (zooxanthellae) in the soft coral,Heteroxenia fuscescens. — Endocyt. Cell Res.2, 71–82.Google Scholar
  20. Schlichter, D., Weber, W. & Fricke, H. W., 1985. A chromatophore system in the hermatypic, deepwater coralLeptoseris fragilis (Anthozoa: Hexacorallia). — Mar. Biol.89, 143–147.CrossRefGoogle Scholar
  21. Schlichter, D., Fricke, H. W. & Weber, W., 1986. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. — Mar. Biol.91, 403–407.CrossRefGoogle Scholar
  22. Schlichter, D., Fricke, H. W. & Weber, W., 1988. Evidence for PAR-enhancement by reflection, scattering, and fluorescence in the symbiotic deep water coralLeptoseris fragilis (PAR=Photosynthetically Active Radiation). — Endocyt. Cell Res.5, 83–94.Google Scholar
  23. Schlichter, D. & Fricke, H. W., 1990. Coral host improves photosynthesis of endosymbiotic algae. —Naturwissenschaften77, 447–450.CrossRefGoogle Scholar
  24. Schlichter, D. & Fricke, H. W., 1991. Mechanisms of amplification of photosynthetically active radiation in the symbiotic deepwater coralLeptoseris fragilis — Hydrobiologia216/217, 389–394.CrossRefGoogle Scholar
  25. Schuhmacher, H., 1979. Experimentelle Untersuchungen zur Anpassung von Fungiiden (Scleractinia, Fungiidae) an unterschiedliche Sedimentation- und Bodenverhältnisse. — Int. Revue ges. Hydrobiol.2, 207–243.Google Scholar
  26. Sebens, K. P., 1987. Feeding mechanisms of coelenterates. In: Animal energetics. Ed. by T. J. Pandian & F. J. Vernberg, Acad. Press. San Diego,1, 58–60.Google Scholar
  27. Solow, A. R. & Gallager, S. M., 1990. Analysis of capture efficiency in suspension feeding: application of nonparametric binary regression. — Mar. Biol.107, 341–344.CrossRefGoogle Scholar
  28. Spencer Davies, P., 1991. Effect of daylight variations on the energy budgets of shallow-water corals. — Mar. Biol.108, 137–144.Google Scholar
  29. Spurr, R. A., 1969. A low-viscosity epoxy embedding medium for electron microscopy. — J. ultrastruct. Res.26, 31–43.CrossRefPubMedGoogle Scholar
  30. Steen, R. G., 1986. Evidence for heterotrophy by zooxanthellae in symbiosis withAiptasia pulchella. — Biol. Bull. mar. biol. Lab., Woods Hole170, 267–278.Google Scholar
  31. Yonge, C. M., 1930. Studies on the physiology of corals: I. Feeding mechanisms and food. — Scient. Rep. Gt Barrier Reef Exped.1, 13–57.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1991

Authors and Affiliations

  • Dietrich Schlichter
    • 1
  1. 1.Zoologisches Institut der Universität KölnKöln 41Federal Republic of Germany

Personalised recommendations