Helgoländer Meeresuntersuchungen

, Volume 50, Issue 1, pp 1–13 | Cite as

Effect of acclimation temperature on temperature responses ofPorphyra leucosticta andEnteromorpha linza from the Gulf of Thessaloniki, Greece

  • S. Orfanidis
  • S. Haritonidis


The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.


Growth Rate Waste Water Water Pollution Laboratory Condition Growth Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Ardré, F., 1970. Contribution à l'étude des algues marines du Portugal. I. La flore.—Port. Acta biol.10B, 137–555.Google Scholar
  2. Athanasiadis, A., 1987. A survey of the seaweeds of the Aegean Sea with taxonomic studies on species of the tribe Antithamnieae (Rhodophyta). Thesis, Goterna, Kungälv, 174 pp.Google Scholar
  3. Belsher, T., Augier, H., Boudouresque, C.-F. & Coppejans, E., 1976. Inventaire des algues marines benthiques de la rade et des îles d'Hyères (Méditerranée France).—Trav. scient. Parc natn. Port-Cros2, 39–89.Google Scholar
  4. Berry, J. A. & Björkman, O., 1980. Photosynthetic response and adaptation to temperature in higher plants.—A. Rev. Pl. Physiol.31, 491–543.Google Scholar
  5. Berry, J. A. & Raison, J. K., 1981. Responses of macrophytes to temperature. In: Encyclopedia of plant physiology. Ed. by O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler. Springer, Berlin,12 A, 277–338.Google Scholar
  6. Bischoff, B. & Wiencke, C., 1993. Temperature requirements for growth and survival of macroalgae from Disko Island (Greenland).—Helgoländer Meeresunters.47, 167–191.Google Scholar
  7. Blackler, H., 1956. The phenology of certain algae at St. Andrews, Fife.—Trans. Proc. bot. Soc. Edinb.37 (1), 60–78.Google Scholar
  8. Børgesen, F. & Jonsson, H., 1905. The distribution of the marine algae of the Arctic and of the northernmost of the Atlantic.—Botany Faeröes3, Appendix 1–28.Google Scholar
  9. Boudouresque, C. F. & Perret, N., 1977. Inventaire de la flore marine de Corse (Méditerranée): Rhodophyceae, Phaeophyceae, Chlorophyceae et Bryopsidophyceae.—Biblthca phycol.25, 1–170.Google Scholar
  10. Bouxin, H. & Dizerbo, A. H., 1971. Les algues de l'Archipel des Glenan.—Botanica Rhedonica (A)10, 201–226.Google Scholar
  11. Breeman, A. M., 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence.—Helgoländer Meeresunters.42, 199–241.Google Scholar
  12. Cambridge, M. L., Breeman, A. M. & Hoek, C. van den, 1990. Temperature responses limiting the geographical distribution of two temperate species ofCladophora (Cladophorales: Chlorophyta) in the North Atlantic Ocean.—Phycologia29, 74–85.Google Scholar
  13. Cambridge, M. L., Breeman, A. M., Kraak, S. & Hoek, C. van den, 1987. Temperature responses of tropical to warm temperateCladophora species in relation to their distribution in the North Atlantic Ocean.—Helgoländer Meeresunters.41, 329–354.CrossRefGoogle Scholar
  14. Cambridge, M. L., Breeman, A. M., Oosterwijk, R. van & Hoek, C. van den, 1984. Temperature responses of some North AtlanticCladophora species (Chlorophyceae) in relation to their geographic distribution.—Helgoländer Meeresunters.38, 349–363.CrossRefGoogle Scholar
  15. Cardinal, A., 1967. Inventaire des algues marines benthiques de la Baie des Chaleurs et de la Baie de Caspe (Quebec). I. Phéophycées. II. Chlorophycées. III. Rhodophycées.—Naturaliste can.94, 233–271, 447–469, 735–760.Google Scholar
  16. Christensen, T., Koch, C., & Thomsen, H. A., 1985. Distribution of algae in Danish salt and brackish waters. Institut for Sporeplanter, Copenhagen, 64 pp.Google Scholar
  17. Coppejans, E. & Ben, D. van der, 1980. Zeewierengids voor de Belgische en Noordfranse kust. Belgische Jeugdbond voor Natuurstudie, Gent, 156 pp.Google Scholar
  18. Davison, I. R., 1991. Environmental effects on algal photosynthesis: temperature.—J. Phycol.27, 2–8.CrossRefGoogle Scholar
  19. Dawes, C. J., 1974. Marine algae of the west coast of Florida. Univ. of Miami Press, Coral Gables, 201 pp.Google Scholar
  20. Dieck, I. tom, 1993. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications.—Mar. Ecol. Prog. Ser.100, 253–264.Google Scholar
  21. Egan, B., Vlasto, A. & Yarish, C., 1989. Seasonal acclimation to temperature and light inLaminaria longicruris de la Pyl. (Phaeophyta).—J. exp. mar. Biol. Ecol.129, 1–16.CrossRefGoogle Scholar
  22. Feldmann, J., 1954. Inventaire de la flore marine de Roscoff.—Trav. Stn biol. Roscoff6 (Suppl.) 1–152.Google Scholar
  23. Feldmann, N. L. & Lutova, M. I., 1963. Variations de la thermostabilité cellulaire des algues en fonctions des changements de la température du milieu.—Cah. Biol. mar.4, 435–458.Google Scholar
  24. Furnari, G., 1984. The benthic marine algae of southern Italy.—Webbia38, 349–369.Google Scholar
  25. Gayral, P., 1958. Algues de la côte Atlantique Marocaine. Société des sciences naturelles et physiques du Maroc, Rabat, 523 pp.Google Scholar
  26. Gayral, P. & Bert, J. J., 1965. Compte rendu de l'excursion de la société phycologique de France en Normandie.—Bull. Soc. linn. Normandie (Ser. 10)6, 122–129.Google Scholar
  27. Gessner, F., 1970. Temperature: plants. In: Marine ecology. Ed. by O. Kinne. Wiley, New York,1 (1), 363–406.Google Scholar
  28. Gorshkov, S. G. (Ed.), 1985. World Ocean Atlas. 2: Atlantic and Indian oceans. Pergamon Press, Oxford, 306 pp.Google Scholar
  29. Guiry, M. D., 1978. A consensus and bibliography of Irish seaweeds. Cramer, Vaduz, 287 pp.Google Scholar
  30. Guiry, M. D. & Cunningham, E. M., 1984. Photoperiodic and temperature responses in the reproduction of north-eastern AtlanticGigartina acicularis (Rhodophyta: Gigartinales).—Phycologia23, 357–367.Google Scholar
  31. Haritonidis, S., 1978. A survey of the marine algae of Thermaikos Gulf, Thessaloniki, Greece. I. Distribution and seasonal periodicity.—Botanica mar.21, 527–535.Google Scholar
  32. Jorde, I., 1966. Algal associations of a coastal area south of Bergen, Norway.—Sarsia23, 1–52.Google Scholar
  33. Kappen, L., 1981. Ecological significance of resistance to high temperature. In: Encyclopedia of plant physiology. Ed. by O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler. Springer, Berlin,12 A, 439–474.Google Scholar
  34. Kinne, O., 1970. Temperature: invertebrates. In: Marine ecology. Ed. by O. Kinne, Wiley, New York,1 (1), 407–514.Google Scholar
  35. Kornmann, P. & Sahling, P.-H., 1977. Meeresalgen von Helgoland. Benthische Grün-, Braun- und Rotalgen.—Helgoländer wiss. Meeresunters.29, 1–289.CrossRefGoogle Scholar
  36. Lampe, H., 1935. Die Temperatureinstellung des Stoffgewinns bei Meeresalgen als plasmatische Anpassung.—Protoplasma23, 534–578.CrossRefGoogle Scholar
  37. Lancelot, A., 1961. Recherches biologiques et océanographiques sur les végétaux marins des côtes francaises entre la Loire et la Gironde. Muséum National d'Histoire de Cryptogamie, Paris, 210 pp.Google Scholar
  38. Larcher, W., 1983. Physiological plant ecology. Springer, Berlin, 303 pp.Google Scholar
  39. Larcher, W. & Bauer, H., 1981. Ecological significance of resistance to low temperature. In: Encyclopedia of plant physiology. Ed. by O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler. Springer, Berlin,12 A, 403–437.Google Scholar
  40. Lawson, G. W. & Price, J. H., 1969. Seaweeds of the western coast of tropical Africa and adjacent islands: a critical assessment. I. Chlorophyta and Xanthophyta.—J. Linn. Soc. (Botany)62, 279–346.Google Scholar
  41. Levitt, J., 1980. Responses of plants to environmental stresses. Acad. Press, New York,1, 1–497.Google Scholar
  42. Levring, T., 1935. Zur Kenntnis der Algenflora von Kullen an der schwedischen Westküste.—Lunds Univ. Årsskr. (N. F. 2)31 (4), 1–64.Google Scholar
  43. Lipkin, Y. & Safriel, U., 1971. Intertidal zonation on rocky shores at Mikhmoret (Mediterranean, Israel).—J. Ecol.59, 1–30.Google Scholar
  44. Lüning, K., 1984. Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example.—Helgoländer Meeresunters.38, 305–317.CrossRefGoogle Scholar
  45. Lüning, K., 1990. Seaweed biogeography and ecophysiology. Wiley, New York. 527 pp.Google Scholar
  46. Meñez, E. G. & Mathieson, A. C., 1981. The marine algae of Tunesia.—Smithson. Contr. mar. Sci.10, 1–59.Google Scholar
  47. Munda, I. M. 1977. The benthic algal vegetation of the island of Grímsey (Eyjafjaroarsýsla, North Iceland).—Bull. Res. Inst. Nedri Ás28, 1–69.Google Scholar
  48. Munda, I. M., 1983. Survey of the benthic algal vegetation of the Reydarfjordur as a typical example of the East Icelandic vegetation pattern.—Nova Hedwigia37, 545–640.Google Scholar
  49. Munda, I. M., 1985. General survey of the benthic algal vegetation along the Baroaströnd coast (Breioafjorour, West Iceland).—Bull. Res. Inst. Nedri Ás44, 1–62.Google Scholar
  50. Munda, I. M., 1987. Characteristic features of the benthic algal vegetation along the Snaefellsnes peninsula (southwest Iceland).—Nova Hedwigia44, 399–448.Google Scholar
  51. Nizamuddin, M., West, J. A. & Meñez, E. G., 1978. A list of marine algae from Libya.—Botanica mar.22, 465–476.Google Scholar
  52. Norton, T. A. & Powell, H. T., 1979. Seaweeds and rocky shores of the Outer Hebrides.—Proc. R. Soc. Edinb.77B, 141–153.Google Scholar
  53. Novaczeck, I., Breeman, A. M. & Hoek, C. van den, 1989. Thermal tolerance ofStypocaulon scoparium (Phaeophyta, Sphacelariales) from eastern and western shores of the North Atlantic Ocean.—Helgoländer Meeresunters.43, 183–193.Google Scholar
  54. Orfanidis, S., 1990. Temperature and photoperiodic responses of several Mediterranean macroalgae in relation to their distribution in the North Atlantic Ocean. Thesis, Univ. of Thessaloniki, 171 pp.Google Scholar
  55. Orfanidis, S., 1991. Temperature responses and distribution of macroalgae belonging to the warmtemperate Mediterranean Atlantic distribution group.—Botanica mar.34, 541–552.Google Scholar
  56. Orfanidis, S., 1993. Temperature responses and distribution of several Mediterranean macroalgae belonging to different distribution groups.—Botanica mar.36, 359–370.Google Scholar
  57. Perez-Cirera, J. L., 1975. Catalógo floristico de las algas bentonicas de la Ria de Corme y Lage, NO. de España.—Anal. Inst. bot. A. J. Cavanillo32, 5–87.Google Scholar
  58. Peters, A. F. & Breeman, A. M., 1992. Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics.—J. Phycol.28, 428–438.Google Scholar
  59. Precht, H., Christophersen, J., Hensel, H. & Larcher, W. (Eds), 1973. Temperature and life. Springer, Berlin, 779 pp.Google Scholar
  60. Prinz, H., 1926. Die Algenvegetation des Trondhjemsfjordes.—Skr. norske VidenskAkad. (Mat.-naturv. Kl.)5, 1–274.Google Scholar
  61. Ribera Siguàn, M. A. & Gómez Carreta, A., 1985. Checklist of the benthic marine flora of the Balearic Islands. II. Phaeophyceae, Chlorophyceae.—Collnea bot.16 (1), 25–41.Google Scholar
  62. Schnetter, R., 1978. Marine Algen der Karibischen Küste von Kolumbien. II. Chlorophyceae.—Biblthica phycol.42, 1–198.Google Scholar
  63. Schwenke, H., 1959. Untersuchungen zur Temperaturresistenz mariner Algen der westlichen Ostsee. I: Das Resistenzverhalten von Tiefenrotalgen bei ökologischen und nicht-ökologischen Temperaturen—Kieler Meeresforsch.15, 34–50.Google Scholar
  64. Searles, R. B. & Schneider, C. W., 1978. A checklist and bibliography of North Carolina seaweeds.—Botanica mar.21, 99–108.Google Scholar
  65. Seoane-Camba, J. A., 1965. Estudios sobre las algas bentonicas en la costa sur de la Peninsula Ibérica (litoral de Cadiz).—Investigación pesq.29, 3–216.Google Scholar
  66. South, G. R. & Hooper, R. G., 1980. A catalogue and atlas of the benthic marine algae of the island of Newfoundland.—Occ. Pap. Biol. Meml Univ. Newfoundl.3, 1–136.Google Scholar
  67. South, G. R. & Tittley, I., 1986. A checklist and distributional index of the benthic marine algae of the North Atlantic Ocean. British Museum (Natural History), London, 76 pp.Google Scholar
  68. Stegenga, H. & Mol, I., 1983. Flora van de Nederlandse Zeewieren. Koninklijke Nederlandse Natuurhistorische Vereniging, Amsterdam, 263 pp.Google Scholar
  69. Steponkus, P. L., 1981. Responses to extreme temperatures. Cellular and subcellular bases. In: Encyclopedia of plant physiology. Ed. by O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler. Springer, Berlin,12 A, 371–402.Google Scholar
  70. Sundene, O., 1953. The algal vegetation of the Oslofjord.—Skr. norske VidenskAkad. (Mat.-naturv. Kl.)2, 1–244.Google Scholar
  71. Taylor, W. R., 1969. Notes on the distribution of West Indian marine algae particularly in the Lesser Antilles.—Contr. Univ. Mich. Herb.9, 125–203.Google Scholar
  72. Yarish, C., Breeman, A. M. & Hoek, C. van den, 1984. Temperature, light and photoperiod responses of some Northeast American and West European endemic rhodophytes in relation to their geographic distribution.—Helgoländer Meeresunters.38, 273–304.CrossRefGoogle Scholar
  73. Yarish, C., Breeman, A. M. & Hoek, C. van den, 1986. Survival strategies and temperature responses of seaweeds belonging to different distribution groups.—Botanica mar.29, 215–230.Google Scholar
  74. Yarish, C., Kirkman, H. & Lüning, K., 1987. Lethal exposure times and preconditioning to upper temperature limits of some temperate North Atlantic red algae.—Helgoländer Meeresunters.41, 323–327.CrossRefGoogle Scholar
  75. Wilkinson, M., 1982. Marine algae from Glamorgan.—Br. phycol. J.17, 101–106.Google Scholar
  76. Zinova, A. D., 1967. Identification of green, brown and red algae in the Southern Seas of U.S.S.R. Izdatel'stvo Akademii Nauka, Moskva, 398 pp. (In Russian).Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1996

Authors and Affiliations

  • S. Orfanidis
    • 1
  • S. Haritonidis
    • 1
  1. 1.Botanical Institute, Department of BiologyUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations