Skip to main content
Log in

Stroke volume measurement during supine and upright cycle exercise by impedance cardiography

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study evaluated impedance cardiography (ZCG) estimates of stroke volume (SV) during exercise. Seven subjects were studied at rest and during progressive cycle exercise in supine and upright positions. SV was determined by ZCG (SVzcg) during exercise and for the first 5 cardiac cycles following exercise. SVzcg was compared with separate measurements of SV by CO2 rebreathing (SVco 2). Static blood resistivity (ρ) was measured at each level of exercise. No significant differences were found between supine exercise and immediate post-exercise values for the peak of the first derivative of the impedance change (dZ/dt max), left ventricular ejection time (LVET), or SVzcg. Small differences indZ/dt max and SVzcg, but not LVET, were found in exercise to post-exercise cycling in the upright position. Intra-individual SVzcg and SVco 2 were moderately correlated (upright meanr=0.64, supiner=0.42) from rest to 70% of peak\(\dot Vo_2 \). Similar correlations were found between Pulse-O2 (\(\dot Vo_2 \)/heart rate, used as an index to SV) and both SVzcg (uprightr=0.73, supiner=0.57) and SVco 2 (uprightr=0.8, supiner=0.65). The ZCG parametersdZ/dt max and LVET correlated better with Pulse-O2 (dZ/dt max: uprightr=0.92, supiner=0.73; LVET: uprightr=−0.9, supiner=−0.9). SVzcg calculated with the Kubicek equation performed as well as SVco 2. ZCG might be a superior method if the inversely correlated parameters,dZ/dt max and LVET, were not expressed as a product to calculate SV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, D. G. Practical Statistics for Medical Research, London: Chapman and Hall, 1991.

    Google Scholar 

  2. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement.Lancet 307–310, 1986.

  3. Collier, C. Determination of mixed venous CO2 tension by rebreathing.J. Appl. Physiol. 9:25–29, 1956.

    CAS  PubMed  Google Scholar 

  4. Coyle, E. F., M. K. Hemmert, and A. R. Coggan. Effects of detraining on cardiovascular responses to exercise: role of blood volume.J. Appl. Physiol. 60:95–99, 1986.

    CAS  PubMed  Google Scholar 

  5. Defares, J. G. Determination of Pv co 2 from exponential CO2 rise during rebreathing.J. Appl. Physiol. 13:159–164, 1958.

    CAS  PubMed  Google Scholar 

  6. Denniston, J. C., J. T. Maher, J. T. Reeves, J. C. Cruz, A. Cymerman, and R. F. Grover. Measurement of cardiac output by electrical impedance at rest and during exercise.J. Appl. Physiol. 40:91–95, 1976.

    CAS  PubMed  Google Scholar 

  7. Doerr, B. M., D. S. Miles, and M. A. B. Frey. Influence of respiration on stroke volume determined by impedance cardiography.Aviat. Space Environ. Med. 52:394–398, 1981.

    CAS  PubMed  Google Scholar 

  8. Du Quesnay, M. C., G. J. Stoute, and R. L. Hughson. Cardiac output in exercise by impedance cardiography during breath hold and normal breathing.J. Appl. Physiol. 62:101–107, 1987.

    PubMed  Google Scholar 

  9. Edmunds, A. T., S. Godfrey, and M. Tooley. Cardiac output measured by transthoracic impedance cardiography at rest, during exercise and at various lung volumes.Clin. Sci. 63:107–113, 1982.

    CAS  PubMed  Google Scholar 

  10. Fujinami, T., S. Nakano, K. Nakayama, and K. Takada. Impedance cardiography for the assessment of cardiac function during exercise.Jpn. Circ. J. 43:215–233, 1979.

    CAS  PubMed  Google Scholar 

  11. Geddes, L. A., and C. Sadler. The specific resistance of blood at body temperature.Med. Biol. Eng. 11:336–339, 1973.

    CAS  PubMed  Google Scholar 

  12. Hill, D. W., and F. D. Thompson. The effect of haematocrit on the resistivity of human blood at 37°C and 100 kHz.Med. Biol. Eng. 13:182–186, 1975.

    CAS  PubMed  Google Scholar 

  13. Kobayashi, Y., Y. Andoh, T. Fujinami, K. Nakayama, K. Takada, T. Takeuchi, and M. Okamoto. Impedance cardiography for estimating cardiac output during submaximal and maximal work.J. Appl. Physiol. 45:459–462, 1978.

    CAS  PubMed  Google Scholar 

  14. Kubicek, W. G., J. N. Karnegis, R. P. Patterson, D. A. Witsoe, and R. H. Mattson. Development and evaluation of an impedance cardiac output system.Aerospace Med. 37: 1208–1212, 1966.

    CAS  Google Scholar 

  15. Miles, D. S., M. N. Sawka, S. W. Wilde, B. M. Doerr, M. A. B. Frey, and R. M. Glasser. Estimation of cardiac output by electrical impedance during arm exercise in women.J. Appl. Physiol. 51:1488–1492, 1981.

    CAS  PubMed  Google Scholar 

  16. Miles, D. S., M. N. Sawka, D. H. Hanpeter, J. E. Foster, B. M. Doerr, and M. A. B. Frey. Central hemodynamics during progressive upper- and lower-body exercise and recovery.J. Appl. Physiol. 57:366–370, 1984.

    CAS  PubMed  Google Scholar 

  17. Milsom, I., R. Sivertsson, B. Biber, and T. Olsson. Measurement of stroke volume with impedance cardiography.Clin. Physiol. 2:409–417, 1982.

    CAS  PubMed  Google Scholar 

  18. Miyamoto, Y., J. Higuchi, Y. Abe, T. Hiura, Y. Nakazono, and T. Mikami. Dynamics of cardiac output and systolic time intervals in supine and upright exercise.J. Appl. Physiol. 55:1674–1681, 1983.

    CAS  PubMed  Google Scholar 

  19. Miyamoto, Y., T. Hiura, T. Tamura, T. Nakamura, J. Higuchi, and T. Mikami. Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load.J. Appl. Physiol. 52:1198–1208, 1982.

    CAS  PubMed  Google Scholar 

  20. Mohapatra, S. N., K. L. Costeloe, and D. W. Hill. Blood resistivity and its implications for the calculation of cardiac output by the electrical impedance technique.Intensive Care Med. 3:63–67, 1977.

    Article  CAS  PubMed  Google Scholar 

  21. Niizeki, K., Y. Miyamoto, and K. Doi. A comparison between cardiac output determined by impedance cardiography, and the rebreathing method during exercise in man.Jpn. J. Physiol. 39:441–446, 1989.

    CAS  PubMed  Google Scholar 

  22. Penney, B. C. Theory and cardiac applications of electrical impedance measurements.CRC Crit. Rev. Biomed. Eng. 13:227–281, 1986.

    CAS  Google Scholar 

  23. Quail A. W., F. M. Traugott, W. L. Porges, and S. W. White. Thoracic resistivity for stroke volume calculation in impedance cardiography.J. Appl. Physiol. 50:191–195, 1981.

    CAS  PubMed  Google Scholar 

  24. Quail, A. W., and F. M. Traugott. Effects of changing hematocrit, ventricular rate and myocardial inotropy on the accuracy of impedance cardiography.Clin. Exp. Pharmacol. Physiol. 8:335–343, 1981.

    CAS  PubMed  Google Scholar 

  25. Tanaka, K., H. Kanai, K. Nakayama, and N. Ono. The impedance of blood: the effects of red cell orientation and its application.Jpn. J. Med. Eng. 8:436, 1970.

    Google Scholar 

  26. Traugott F. M., A. W. Quail, and S. W. White. Evaluation of blood resistivityin vivo for impedance cardiography in man, dog and rabbit.Med. Biol. Eng. Comput. 19:547–552, 1981.

    CAS  PubMed  Google Scholar 

  27. Vanfraechem, J. H. I. Stroke volume and systolic time interval adjustments during bicycle exercise.J. Appl. Physiol. 46:588–592, 1979.

    CAS  PubMed  Google Scholar 

  28. White, S. W., A. W. Quail, P. W. De Leeuw, F. M. Traugott, W. J. Brown, W. L. Porges, and D. B. Cottee. Impedance cardiography for cardiac output measurement: an evaluation of accuracy and limitations.Eur. Heart J. 11, (suppl 1):79–92, 1990.

    PubMed  Google Scholar 

  29. Wilson, M. F., B. H. Sung, G. A. Pincomb, and W. R. Lovallo. Simultaneous measurement of stroke volume by impedance cardiography and nuclear ventrilography: comparisons at rest and exercise.Ann. Biomed. Eng. 17:475–482, 1989.

    Article  CAS  PubMed  Google Scholar 

  30. Zvyagintsev, V. V. Measurement of blood resistivity.Meditsinskaya Tekhnika (trans.) 5:30–32, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J.K., Coggan, A.R., Hopper, M.K. et al. Stroke volume measurement during supine and upright cycle exercise by impedance cardiography. Ann Biomed Eng 22, 514–523 (1994). https://doi.org/10.1007/BF02367087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367087

Keywords

Navigation