Skip to main content
Log in

Time-frequency spectral representation of the EEG as an Aid in the detection of depth of anesthesia

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A time-frequency spectral representation (TFSR) has been used to study the nonstationary information in the EEG as an aid in determining the anesthetic depth. This paper uses a TFSR with an exponential weighting function for the purpose. Raw EEG data were collected from 10 mongrel dogs at various levels of halothane anesthesia. Depth of anesthesia was tested by observing the response to tail clamping, which is considered a supramaximal stimulus in dogs. A positive response was graded as awake (depth 0), and a negative response was graded as asleep (depth 1). The EEG obtained during a period of 30 sec tail clamp was processed into TFSRs. It was observed that at depth 0, the spectrum becomes localized in time and frequency. The percentage of energy in the delta (1–3.5 Hz) and theta (3.5–7.5 Hz) frequency bands increased. At depth 1, the spectrum remained unchanged throughout the period of tail clamp. The performance of the TFSR in detecting the patient’s awareness was also compared with the power spectrum. It was concluded that under certain anesthetic conditions, the TFSR is superior to the power spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cerutti, S., D. Liberati, and P. Mascellani. Parameter extraction in EEG processing during riskful neurosurgical operations.Signal Processing 9:25–35, 1985.

    Article  Google Scholar 

  2. Choi, H. I., and W. J. Williams. Improved time-frequency representation of multicomponent signals using exponential kernels.IEEE Trans. Acoust. Speech Signal Processing 37: 862–871, 1989.

    Article  Google Scholar 

  3. Claasen, T. A. C. M., and W. F. G. Mecklenbräuker. The wigner distribution: a tool for time-frequency signal analysis: Part I.Philips J. Res. 35:217–250, 1980.

    Google Scholar 

  4. Classen, T. A. C. M., and W. F. G. Mecklenbräuker. The wigner distribution: a tool for time-frequency signal analysis: Part II.Philips J. Res. 5:276–300, 1980.

    Google Scholar 

  5. Classen, T. A. C. M., and W. F. G. Mecklenbräuker. The wigner distribution: a tool for time-frequency signal analysis: Part III.Philips J. Res. 5:372–389, 1980.

    Google Scholar 

  6. Cohen, L. Generalized phase-space distribution function.J. Math. Phys. 7:781–786, 1966.

    Google Scholar 

  7. Cohen, L. Time-Frequency distributions—a review.Proc. IEEE 77:941–981, 1989.

    Google Scholar 

  8. Dutton, R., W. D. Smith, and N. Smith. Does the EEG predict anesthetic depth better than cardiovascular variables?Anesthesiology 73:A532, Sep, 1990.

    Google Scholar 

  9. Eger, E. I., L. J. Saidman, and B. Brandstater. Minimum alveolar anesthetic concentration: a standard of anesthetic potency.Anesthesiology 26:756–763, 1965.

    PubMed  Google Scholar 

  10. Gath, I., C. Feuerstein, D. T. Pham, and G. Rondouin. On the tracking of rapid dynamic changes in seizure EEGIEEE Trans. Biomed. Eng. 39:952–958, 1992.

    Article  CAS  PubMed  Google Scholar 

  11. Ghoneim, M. M., and R. I. Block. Learning and consciousness during general anesthesia.Anesthesiology 76: 279–305, 1992.

    CAS  PubMed  Google Scholar 

  12. Ghouri, A. F., T. G. Monk, and P. F. White. Electroencephalogram spectral edge frequency, lower esophageal contractility and autonomic responsiveness during general anesthesia.J. of Clin. Monitoring 9:176–185, 1993.

    CAS  Google Scholar 

  13. Gibbs, F. A., E. L. Gibbs, and W. G. Lenox. Effect of the Electroencephalogram of certain drugs which influence nervous activity.Arch. Intern. Med. 60:154–166, 1937.

    Google Scholar 

  14. Harris, F. H. On the use of windows for harmonic analysis with the discrete fourier transform.Proceedings of the IEEE 66:51–83, 1978.

    Google Scholar 

  15. Jansen, B. H., J. R. Bourne, and J. Ward. Autoregressive estimation of short segment spectra for computerized EEG analysis.IEEE Trans. Biomed. Eng. 28:630–638, 1981.

    CAS  PubMed  Google Scholar 

  16. Kawabata, N. A non-stationary analysis of the Electrocorticogram.IEEE Trans. Biomed. Eng. 20:444–452, 1973.

    CAS  PubMed  Google Scholar 

  17. Koch, E., P. Bischoff U. Pichlmeier, and J. S. Esch. Surgical stimulation induces changes in brain electrical activity during isoflurane/nitrous oxide anesthesia.Anesthesiology 80:1026–1034, 1994.

    Google Scholar 

  18. Klein, F. F., and D. A. Davis. The use of time domain analyzed EEG in conjunction with cardiovascular parameters for monitoring anesthetic levels.IEEE Trans. Biomed. Eng. 28:36–40, 1981.

    CAS  PubMed  Google Scholar 

  19. Koenig, R., H. Dunn, and L. Y. Lacy. The Sound spectrograph.J. Acoust. Soc. Amer. 18:19–49, 1946.

    Google Scholar 

  20. Martin, J. T., A. Faulkoner, and R. G. Bickford. Electroencephalography in anesthesiology.Anesthesiology 20:359–376, 1959.

    CAS  PubMed  Google Scholar 

  21. Martin, W., and P. Flandrin. Wigner-Ville spectral analysis of nonstationary processes.IEEE Trans. Acoust. Speech Signal Processing 33:1461–1470, 1985.

    Article  Google Scholar 

  22. McEwen, J., G. B. Anderson, M. Low, and L. Jenkins. Monitoring the level of anesthesia by automatic analysis of spontaneous EEG activity.IEEE Trans. Biomed. Eng. 22: 299–305 1975.

    CAS  PubMed  Google Scholar 

  23. McEwen, J. A., and G. B. Anderson. Modeling the stationarity and gaussianity of spontaneous Electroencephalographic activity.IEEE Trans. Biomed. Eng. 22:361–369, 1975.

    CAS  PubMed  Google Scholar 

  24. Oppenhiem, A. V., and R. W. Schaffer. Digital Signal Processing. Englewood Cliffs: Prentice Hall International, 1989, pp. 337–375.

    Google Scholar 

  25. Page, C. H. Instantaneous power spectra.J. Appl. Phys. 23:103–106, 1952.

    Article  Google Scholar 

  26. Prince, D. A., and S. Shanzer. Effects of anesthetics upon the EEG response to reticular stimulation. Patterns of slow synchrony.Electroenceph. and Clin. Neurophysiol. 21: 578–588, 1966.

    CAS  Google Scholar 

  27. Rihaczek, W. Signal energy distribution in time and frequency.IEEE Trans. Informat. Theory. 14:369–374, 1968.

    Article  Google Scholar 

  28. Redding, R. W. Canine Electroencephalography. In: Canine Neurology, edited by B. F. Hoerlin, W. B. Saunders, Philadelphia, 1965, pp. 55–70.

    Google Scholar 

  29. Sharma, A., and R. J. Roy. Analysis of hidden nodes in a neural network trained for pattern classification of EEG data.Proc. of the 15th Annual International Conf. of the IEEE-EMBS 1:252–253, 1993.

    Google Scholar 

  30. Schwilden, H., and H. Stoechel. Effective therapeutic infusion produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl.Anesthesiology 73:225–229, 1990.

    CAS  PubMed  Google Scholar 

  31. Sidi, A., P. Halimi, and S. Cotev. Estimating anesthetic depth by Electroencephalography during anesthetic induction and intubation in patients undergoing cardiac surgery.J. Clin. Anesth. 2:101–107, 1990.

    Article  CAS  PubMed  Google Scholar 

  32. Srebro, R. Reduction of EEG activity caused by a light flash.Electroenceph. and Clin. Neurophysiol. 54:707–710, 1982.

    CAS  Google Scholar 

  33. Thomsen, C. E., K. N. Christensen, and A. Rosenfalck. Computerized monitoring of depth of anesthesia with Isoflurane.British Jour. of Anesthesia 63:36–43, 1989.

    CAS  Google Scholar 

  34. Veselis, R. A., R. Reinsel, R. Alagesan, R. Heino, and R. Bedford. The EEG as a monitor of Midazalom Amnesia: changes in power and topography as a function of amnesic state.Anesthesiology 74:866–874, 1991.

    CAS  PubMed  Google Scholar 

  35. Vishnoi, R., and R. J. Roy. Adaptive control of closed circuit anesthesia.IEEE Trans. Biomed. Eng. 38:39–47, 1991.

    Article  CAS  PubMed  Google Scholar 

  36. Zaveri, H. P., W. J. Williams L. D. Iasemidis, and J. Sackellares. Time-Frequency representation electrocorticograms in temporal lobe epilepsy.IEEE Trans. Biomed. Eng. 39:502–509, 1992.

    Article  CAS  PubMed  Google Scholar 

  37. Zbinden, A. M., M. Maggiorini, S. Petersen-Felix, Lauber, R., Thomson, D. A., and Minder, C. E. Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I. Motor reactions.Anesthesiology 80: 253–260, 1994.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, A., Roy, R.J. & Sharma, A. Time-frequency spectral representation of the EEG as an Aid in the detection of depth of anesthesia. Ann Biomed Eng 22, 501–513 (1994). https://doi.org/10.1007/BF02367086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367086

Keywords

Navigation