Skip to main content
Log in

Shear rate and hematocrit dependence of fluorescence from retinal vessels in fluorescein angiography

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this work was to obtain more quantitative knowledge about the yield of fluorescence from retinal vessels during fluorescein angiography. The influence of shear rate, concentration of sodium fluorescein, hematocrit, and layer thickness on the yield of fluorescence from blood were investigated. Measurements were performedin vitro on samples of human blood in a cone-plate shear chamber using frontal illumination. Application of physiologically relevant levels of shear (>88/sec) decreased the yield of fluorescence from the blood sample considerably as compared with stasis. The yield of fluorescence was proportionally related to the logarithm of the sodium fluorescein concentration in blood up to a sodium fluorescein concentration of 1.2 mg/ml. Above that concentration quenching occurred. An increase in layer thickness at a hematocrit of 45% resulted only in an increase of the yield of fluorescence up to a layer thickness of 25 μm. In conclusion, the sodium fluorescein concentration in blood is the only important factor that determines the yield of fluorescence from the larger retinal vessels in the successive phases of the fluorescein angiogram in a subject with a given hematocrit and hemoglobin concentration. The yield of fluorescence from retinal vessels (>25 μm) is proportionally related to the logarithm of the sodium fluorescein concentration over a broad range of concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, P. N., G. T. Feke, J. Morales-Stoppello, C. E. Riva, D. G. Goger, G. Collas, and J. W. McMeel. Prolongation of the retinal mean circulation time in diabetes.Arch. Ophthalmol. 100:764–768, 1982.

    CAS  PubMed  Google Scholar 

  2. Delori, F. C., M. A. Castany, and R. H. Webb. Fluorescence characteristics of sodium fluorescein in plasma and whole blood.Exp. Eye Res. 27:417–424, 1978.

    Article  CAS  PubMed  Google Scholar 

  3. Flower, R. W. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye.Invest. Ophthalmol. 12:881–895, 1973.

    CAS  PubMed  Google Scholar 

  4. Klose, H. J., E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schoenbein. Microrheology and light transmission of blood. I. The photometric aspects of red cell aggregation and red cell orientation.Pflügers Arch. 333:126–139, 1972.

    Article  CAS  PubMed  Google Scholar 

  5. Lipowsky, H. H., S. Usami, and S. Chien.In vivo measurement of apparent viscosity and microvessel hematocrit in the mesentery of the cat.Microvasc. Res. 19:297–319, 1980.

    Article  CAS  PubMed  Google Scholar 

  6. Rampling, M. W. Red cell aggregation and yield stress. In: Clinical Blood Rheology, Volume I, edited by G. D. Lowe. Boca Raton, Florida, CRC Press Inc., 1988, pp. 48–50.

    Google Scholar 

  7. Romanchuk, K. G. Fluorescein. Physiochemical factors affecting its fluorescence.Surv. Ophthalmol. 26:269–283, 1982.

    CAS  PubMed  Google Scholar 

  8. Schmid-Schoenbein, H., E. Volger, and H. J. Klose. Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion in flow.Pflügers Arch. 333:140–155, 1972.

    Google Scholar 

  9. Sdougos, H. P., S. R. Bussolari, and C. F. Dewey. Secondary flow and turbulence in a cone-and-plate device.J. Fluid Mech. 138:379–404, 1984.

    Google Scholar 

  10. Seki, J., and H. H. Lipowsky.In vivo andin vitro measurements of red cell velocity under epifluorescence microscopy.Microvasc. Res. 38:110–124, 1989.

    Article  CAS  PubMed  Google Scholar 

  11. Slaaf, D. W., F. H. Jongsma, G. J. Tangelder, and R. S. Reneman. Characteristics of optical systems for intravital microscopy. In: Microcirculatory Technology, edited by C. H. Baker and W. L. Nastuk. Orlando, Florida, Academic Press Inc., 1986, pp. 211–228.

    Google Scholar 

  12. Slaaf, D. W., G. J. Tangelder, and R. S. Reneman. Physics of the microcirculation. In: The Physics of Heart and Circulation, edited by J. Strakee and N. Westerhof, Bristol: Institute of Physics Publishing Ltd., 1993, pp. 383–416.

    Google Scholar 

  13. Tangelder, G. J., D. W. Slaaf, and R. S. Reneman. Fluorescent labelling of blood plateletsin vivo.Thromb. Res. 28:803–820, 1982.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Biesen, P.R., Jongsma, F.H., Tangelder, G.J. et al. Shear rate and hematocrit dependence of fluorescence from retinal vessels in fluorescein angiography. Ann Biomed Eng 22, 456–463 (1994). https://doi.org/10.1007/BF02367082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367082

Keywords

Navigation