Helgoländer Meeresuntersuchungen

, Volume 48, Issue 2–3, pp 243–256 | Cite as

Effects ofFucus vesiculosus covering intertidal mussel beds in the Wadden Sea

  • A. Albrecht
  • K. Reise


The brown algaFucus vesiculosus formamytili (Nienburg) Nienhuis covered about 70% of mussel bed (Mytilus edulis) surface area in the lower intertidal zone of Königshafen, a sheltered sandy bay near the island of Sylt in the North Sea. Mean biomass in dense patches was 584 g ash-free dry weight m−2 in summer. On experimental mussel beds, fucoid cover enhanced mud accumulation and decreased mussel density. The position of mussels underneath algal canopy was mainly endobenthic (87% of mussels with >1/3 of shell sunk into mud). In the absence of fucoids, mussels generated epibenthic garlands (81% of mussels with <1/3 of shell buried in mud). Mussel density underneath fucoid cover was 40 to 73% of mussel density without algae. On natural beds, barnacles (Balanidae), periwinkles (Littorina littorea) and crabs (particularly juveniles ofCarcinus maenas) were significantly less abundant in the presence of fucoids, presumably because most of the mussels were covered with sediment, whereas in the absence of fucoids, epibenthic mussel clumps provided substratum as well as interstitial hiding places. The endobenthic macrofauna showed little difference between covered and uncovered mussel beds. On the other hand, grazing herbivores — the flat periwinkleLittorina mariae, the isopodJaera albifrons and the amphipodsGammarus spp. — were more abundant at equivalent sites with fucoid cover. The patchy growth ofFucus vesiculosus on mussel beds in the intertidal Wadden Sea affects mussels and their epibionts negatively, but supports various herbivores and increases overall benthic diversity.


Mytilus Edulis Dense Patch Hiding Place Lower Intertidal Zone Grazing Herbivore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Albrecht, A., 1991. Einfluß der BraunalgeFucus vesiculosus auf die Lebensgemeinschaft von Miesmuschelbänken im Wattenmeer. Dipl. Arb., Univ. Göttingen, 79 pp.Google Scholar
  2. Asmus, H., 1987. Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. — Mar. Ecol. Prog. Ser.39, 251–266.Google Scholar
  3. Asmus, H., Asmus, R. & Reise, K., 1990. Exchange processes in an intertidal mussel bed: a Sylt-flume study in the Wadden Sea. — Ber. Biol. Anst. Helgoland6, 1–79.Google Scholar
  4. Austen, I., 1992. Geologisch-sedimentologische Kartierung des Königshafens (List/Sylt). — Meyniana44, 45–52.Google Scholar
  5. Cattaneo, A., 1983. Grazing on epiphytes. — Limnol. Oceanogr.28, 124–132.Google Scholar
  6. Chapman, A. R. O., 1990. Effects of grazing, canopy cover and substratum type on the abundances of common species of seaweeds inhabiting littoral fringe tide pools. — Botanica mar.33, 319–326.Google Scholar
  7. Dame, R. F. & Dankers, N., 1988. Uptake and release of materials by a Wadden Sea mussel bed. — J. exp. mar. Biol. Ecol.118, 207–216.CrossRefGoogle Scholar
  8. Dankers, N. & Koelemaij, K., 1989. Variations in the mussel population of the Dutch Wadden Sea in relation to monitoring of other ecological parameters. — Helgoländer Meeresunters.43, 529–535.CrossRefGoogle Scholar
  9. Dean, R. L. & Connell, J. H., 1987. Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. — J. exp. mar. Biol. Ecol.109, 249–273.Google Scholar
  10. Dittmann, S., 1990. Mussel beds — amensalism or amelioration for intertidal fauna? — Helgoländer Meeresunters.44, 335–352.Google Scholar
  11. Dongen, A. van, 1956. The preference ofLittorina obtusata L. for Fucuceae. — Archs néerl. Zool.11, 373–386.Google Scholar
  12. Enright, C., Krailo, D., Staples, L., Smith, M., Vaughan, C., Ward, D., Gaul, P. & Borgese, E., 1983. Biological control of fouling algae in oyster aquaculture. — J. Shellfish Res.3, 41–44.Google Scholar
  13. Eriksson, S. & Edlund, A., 1977. On the ecological energetics of O-groupCarcinus maenas (L.) from a shallow sandy bottom in Gullmar Fjord, Sweden. — J. exp. mar. Biol. Ecol.30, 233–248.CrossRefGoogle Scholar
  14. Haage, P., 1975. Quantitative investigations of the BalticFucus belt macrofauna. 2. Quantitative seasonal fluctuations. — Contr. Askö Lab. Univ. Stockh.9, 1–50.Google Scholar
  15. Haahtela, I., 1984. A hypothesis of the decline of the bladder wrack (Fucus vesiculosus L.) in SW Finland in 1975–1981. — Limnologica15, 345–350.Google Scholar
  16. Hay, M. E. & Fenical, W., 1988. Marine plant-herbivore interactions: the ecology of chemical defense. — A. Rev. Ecol. Syst.19, 111–145.Google Scholar
  17. Hoek, C. van den, Admiraal, W., Colijn, F. & Jonge, V. N. de, 1979. The role of algae and seagrasses in the ecosystem of the Wadden Sea. In: Flora and vegetation of the Wadden Sea. Ed. by W. J. Wolff, Balkema, Rotterdam, 9–118.Google Scholar
  18. Imrie, D. W., McCrohan, C. R. & Hawkins, S. J., 1990. Feeding behaviour inLittorina littorea: a study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. — Hydrobiologia193, 191–198.CrossRefGoogle Scholar
  19. Janke, K., 1990. Biological interactions and their role in community structure in the rocky intertidal of Helgoland (German Bight, North Sea). — Helgoländer Meeresunters.44, 219–263.Google Scholar
  20. Jansson, A. M. & Wulff, F., 1977. Ecosystem analysis of a shallow sound in the northern Baltic—a joint study by the Askö Group. — Contr. Askö Lab. Univ. Stockh.18, 1–160.Google Scholar
  21. Jensen, K. T. & Jensen, J. N., 1985. The importance of some epibenthic predators on the density of juvenile benthic macrofauna in the Danish Wadden Sea. — J. exp. mar. Biol. Ecol.89, 157–174.CrossRefGoogle Scholar
  22. Kangas, P., Autio, H., Hälfors, G., Luther, H., Niemi, A. & Salemaa, H., 1982. A general model of the decline ofFucus vesiculosus at Tvärmine, south coast of Finland, in 1977–1988. — Acta bot. fenn.118, 1–27.Google Scholar
  23. Ketzenberg, C., 1991. Nahrungsökologie der Eiderernte (Somateria mollissima) im Königshafen bei List/Sylt. Dipl. Arb. Univ. Kiel, 91 pp.Google Scholar
  24. Kornmann, P., 1952. Die Algenvegetation von List auf Sylt. — Helgoländer wiss. Meeresunters.4, 55–61.CrossRefGoogle Scholar
  25. Lein, T. E., 1980. The effects ofLittorina littorea L. (Gastropoda) grazing on littoral green algae in the inner Oslo-Fjord, Norway. — Sarsia65, 87–92.Google Scholar
  26. Lubchenko, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preferences and algal competitive abilities. — Am. Nat.112, 23–29.Google Scholar
  27. Lubchenko, J., 1983.Littorina andFucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. — Ecology64, 1116–1123.Google Scholar
  28. Menge, B. A., 1976. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. — Ecol. Monogr.46, 355–393.Google Scholar
  29. Nelson, W. G., 1979. Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. — J. exp. mar. Biol. Ecol.38, 225–245.CrossRefGoogle Scholar
  30. Nicotri, M. E., 1980. Factors involved in herbivore food preference. — J. exp. mar. Biol. Ecol.42, 13–26.CrossRefGoogle Scholar
  31. Nienburg, W., 1925. Eine eigenartige Lebensgemeinschaft zwischenFucus undMytilus. — Ber. dt. bot. Ges.43, 292–298.Google Scholar
  32. Nienburg, W., 1927. Zur Ökologie der Flora des Wattenmeeres. I. Der Königshafen bei List auf Sylt. — Wiss. Meeresunters. (Kiel)20, 146–196.Google Scholar
  33. Nienhuis, P. H., 1970. The benthic algal communities of flats and salt marshes in the Grevelingen, a sea arm in the south-western Netherlands. — Neth. J. Sea Res.5, 20–49.Google Scholar
  34. Obert, B. & Michaelis, H., 1991. History and ecology of the mussel beds (Mytilus edulis L.) in the catchment area of a Wadden Sea tidal inlet. In: Estuaries and coasts: spatial and temporal intercomparisons. Ed. by M. Elliott & J.-P. Ducrotoy. Olsen & Olsen, Fredensborg, 185–194.Google Scholar
  35. Parusel, E., 1990. Die Bedeutung der BraunalgeFucus vesiculosus formamytili (Nienburg) Nienhuis für den Nährstoffumsatz einer “Fucus-Mytilus-Bank” unter besonderer Berücksichtigung der Nährstoffversorgung der Algen. Dipl. Arb., Univ. Bremen, 104 pp.Google Scholar
  36. Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. — Ecology64, 522–533.Google Scholar
  37. Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. — Helgoländer wiss. Meeresunters.30, 263–271.CrossRefGoogle Scholar
  38. Reise, K., Herre, E. & Sturm, M., 1989. Historical changes in the benthos of the Wadden Sea around the island of Sylt in the North Sea. — Helgoländer Meeresunters.43, 417–433.Google Scholar
  39. Riesen, W. & Reise, K., 1982. Macrobenthos of the subtidal Wadden Sea: revisited after 55 years. —Helgoländer Meeresunters.35, 409–423.CrossRefGoogle Scholar
  40. Ropes, J. W., 1968. The feeding habits of the green crab,Carcinus maenas (L.). — Fish. Bull.67, 183–203.Google Scholar
  41. Sachs, L., 1984. Angewandte Statistik. Springer, Berlin, 552 pp.Google Scholar
  42. Scherer, B. & Reise, K., 1981. Significant predation on micro- and macrobenthos by the crabCarcinus maenas L. in the Wadden Sea. — Kiel. Meeresforsch. (Sonderh.)5, 490–500.Google Scholar
  43. Stoner, A. W., 1979. Species-specific predation on amphipod crustacea by the pinfishLagodon rhomboides: mediation by macrophyte standing crop. — Mar. Biol.55, 201–207.CrossRefGoogle Scholar
  44. Stoner, A. W., 1980. Abundance, reproductive seasonality and habitat preferences of amphipod crustaceans in seagrass meadows of Apalachee Bay, Florida. — Contr. mar. Sci.23, 63–67.Google Scholar
  45. Swennen, C., Nehls, G. & Laursen, K., 1989. Numbers and distribution of eidersSomateria mollissima in the Wadden Sea. — Neth. J. Sea Res.24, 83–92.Google Scholar
  46. Verwey, J., 1954. On the ecology of distribution of cockle and mussel in the Dutch Wadden Sea, their role in sedimentation and the source of their food supply. — Archs. néerl. Zool.10, 171–239.Google Scholar
  47. Watson, D. C. & Norton, T. A., 1985. Dietary preferences of the common periwinkle,Littorina littorea (L.). — J. exp. mar. Biol. Ecol.88, 193–211.CrossRefGoogle Scholar
  48. Wilhelmsen, U. & Reise, K., 1994. Grazing on green algae by the periwinkleLittorina littorea in the Wadden Sea. — Helgoländer Meeresunters.48, 233–242.Google Scholar
  49. Williams, G. A., 1990a.Littorina mariae — a factor structuring low shore communities? — Hydrobiologia193, 139–146.Google Scholar
  50. Williams, G. A., 1990b. The comparative ecology of the flat periwinklesLittorina obtusata (L.) andLittorina mariae Sacchi et Rastelli. — Fld Stud.7, 469–482.Google Scholar
  51. Wilson, K., Able, K. W. & Heck, K. L., 1990. Predation rates on juvenile blue crabs in estuarine nursery habitats: evidence for the importance of macroalgae (Ulva lactuca). — Mar. Ecol. Prog. Ser.58, 243–251.Google Scholar
  52. Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaft im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1, 1–92.Google Scholar
  53. Ziegelmeier, E., 1964. Einwirkungen des kalten Winters 1962/63 auf das Makrobenthos im Ostteil der Deutschen Bucht. — Helgoländer wiss. Meeresunters.10, 276–282.CrossRefGoogle Scholar
  54. Ziegelmeier, E., 1970. Über Massenvorkommen verschiedener makrobenthaler Wirbelloser während der Wiederbesiedlungsphase nach Schädigung durch “katastrophale” Umwelteinflüsse. — Helgoländer wiss. Meeresunters.21, 9–20.CrossRefGoogle Scholar
  55. Zwarts, L., 1983. Habitat selection and competition in wading birds. In: Ecology of the Wadden Sea. Ed. by W. J. Wolff. Balkema, Rotterdam,6, 271–279.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1994

Authors and Affiliations

  • A. Albrecht
    • 1
  • K. Reise
    • 1
  1. 1.Biologische Anstalt HelgolandListFederal Republic of Germany

Personalised recommendations