Advertisement

Cybernetics and Systems Analysis

, Volume 30, Issue 3, pp 419–439 | Cite as

Fault trees—Problems and the modern state of investigations

  • N. Yu. Kuznetsov
System Analysis

Keywords

Operating System Artificial Intelligence System Theory Modern State Fault Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Barlow and P. Chatterjee, Introduction to Fault Tree Analysis, ORC 73–30 Oper. Res. Center, Univ. of California, Berkeley (1973).Google Scholar
  2. 2.
    P. Chatterjee, Fault Tree Analysis: Reliability Theory and Systems Safety Analysis, ORC 74–30 Oper. Res. Center, Univ. of California, Berkeley (1974).Google Scholar
  3. 3.
    B. S. Dhillon and C. Singh Engineering Reliability, J. Wiley & Sons, New York-Chichester-Brisbane-Toronto (1981).Google Scholar
  4. 4.
    W. E. Vesely, “A time-dependent methodology for fault tree evaluation,” Nuclear Eng. Design, No. 13, 337–360 (1970).Google Scholar
  5. 5.
    R. G. Bennetts, “On the analysis of fault trees,” IEEE Trans. Reliability, R-24, 175–185 (1975).Google Scholar
  6. 6.
    R. E. Barlow and H. E. Lambert, “Introduction to fault tree analysis,” in: Reliability and Fault Tree Analysis, R. E. Barlow, J. B. Fussell, and N. D. Singpurwalla (eds.), SIAM, Philadelphia (1975), pp. 7–35.Google Scholar
  7. 7.
    W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, methods and applications—a review,” IEEE Trans. Reliability, R-34, 194–203 (1985).Google Scholar
  8. 8.
    K. Stecher, “Evaluation of large fault-trees with repeated events using an efficient bottom-up algorithm,”ibid.,, R-35, 51–58 (1986).Google Scholar
  9. 9.
    L. B. Page and J. E. Perry, “An algorithm for exact fault-tree probabilities without cut sets,”ibid., 544–558.Google Scholar
  10. 10.
    C. C. Fong and J. A. Buzacott, An algorithm for symbolic reliability computation with path-sets or cut-sets, ibid.,, R-36, 34–37 (1987).Google Scholar
  11. 11.
    T. Kohda, E. J. Henley, and K. Inoue, “Finding modules in fault trees,”ibid., No. 38 165–176 (1989).CrossRefGoogle Scholar
  12. 12.
    F. A. Patterson-Hine and B. V. Koen, “Implementation of PATREC nuclear reliability program in LISP,” Trans. Am. Nucl. Soc. No. 50, 286–287 (1985).Google Scholar
  13. 13.
    K. S. Brown, “Evaluating fault trees (AND & OR gates only) with repeated events,” IEEE Trans. Reliability, No. 39, 226–235 (1990).CrossRefMATHGoogle Scholar
  14. 14.
    K. Arndt and B. M. Kirstein, “FAULT_TREE. A computer code for exact calculation of fault tree characteristics without cut sets,” 3rd Workshop on Living-PSA-Application, Hamburg (1992).Google Scholar
  15. 15.
    K. D. Russel and D. M. Rasmuson, “Fault tree reduction and quantification, An overview of IRRAS algorithms,” Reliab. Eng. System Safety, No. 40, 149–164 (1993).Google Scholar
  16. 16.
    W. Hennings and N. Kusnezow, Algorithmus und Eingabeschreibung der Rechenprogramme FAMOCUT and CUTQ zur Loesung sehr grosser und komplexer Fehlerbaeume, KFA-ISR-IB-10/92, KFA-Forschungszentrum Juelich GmbH, ISR (1992).Google Scholar
  17. 17.
    W. Hennings and N. Kuznetsov, “FAMOCUTN and CUTQN — Computer codes for fast analytical evaluation of large faults trees with replicated and negated gates,” IEEE Trans. Reliability, No. 43, 370–379 (1994).Google Scholar
  18. 18.
    Deutsche Risikostudie Kernkraftwerke, Phase B. Verlag TUV Rheinland, Koeln (1989).Google Scholar
  19. 19.
    Z. W. Birnbaum, J. D. Esary, and S. C. Saunders, “Multicomponent systems and structures and their reliability,” Technometrics, No. 3, 55–77 (1961).MathSciNetGoogle Scholar
  20. 20.
    R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing Holt, Rinehart and Winston, New York (1975).Google Scholar
  21. 21.
    D. F. Haasl, Advanced Concepts on Fault Tree Analysis, System Safety Symposium, The Boeing Co., Seattle, Washington (1965).Google Scholar
  22. 22.
    J. B. Fussel, “Computer aided fault tree construction for electrical systems,” in: Reliability and Fault Tree Analysis, R. E. Barlow, J. B. Fussell, and N. D. Singpurwalla (eds.), SIAM, Philadelphia (1975), pp. 37–56.Google Scholar
  23. 23.
    G. M. Powers and F. C. Tompkins, “Fault tree synthesis for chemical process,” AICHE J., No. 20, 376–387 (1974).CrossRefGoogle Scholar
  24. 24.
    S. L. Salem, G. E. Apostolakis, and D. Okrent, A new methodology for the computer-aided construction of fault tree,” Annals of Nuclear Energy, No. 4, 417–433 (1977).CrossRefGoogle Scholar
  25. 25.
    S. A. Lapp and G. J. Powers, “The synthesis of fault trees,” in: Nuclear Systems Reliability Engineering and Risk Assessment, J. B. Fussell, and G. R. Burdick (eds.) SIAM, Philadelphia. (1977).Google Scholar
  26. 26.
    S. A. Lapp, G. J. Powers, “Computer-aided synthesis of fault tree,” IEEE Trans. Reliability, R-26, 2–13 (1977).Google Scholar
  27. 27.
    P. Camarda, F. Corsi, and A. Trentadue, “An efficient simple algorithm for fault tree automatic synthesis from the reliability graph,”ibid., R-27, 215–221 (1978).Google Scholar
  28. 28.
    J. E. Lynch and R. S. Enzinna, “Computer automated fault tree construction and analysis system”, Probabilistic Risk Assessment, Intern. ANS/ENS Topical Meeting, Port Chester (1981).Google Scholar
  29. 29.
    L. Bass, H. W. Wynholds, and W. R. Porterfield, “Fault-tree graphics,” in: Reliability and Fault Tree Analysis, R. E. Barlow, J. B. Fussell, and N. D. Singpurwalla (eds.), SIAM, Philadelphia (1975), pp. 913–927.Google Scholar
  30. 30.
    B. V. Koen, Calculation of system reliability by pattern recognition, Trans. Am. Nucl. Soc., No. 16, 141–142 (1973).Google Scholar
  31. 31.
    M. Modarres, “Mathematical concepts of time-dependent modularized fault tree evaluation,” Probabilistic Risk Assessment, Intern. ANS/ENS Topical Meeting, Port Chester (1981).Google Scholar
  32. 32.
    T. Feo, “PAFT F77, Program for the analysis of fault tree,” IEEE Trans. Reliability, R-35, 48–50 (1986).Google Scholar
  33. 33.
    J. M. Hammersley and D. C. Handscomb, Monte Carlo Method, Methuem and Co. Ltd., London (1967).Google Scholar
  34. 34.
    J. P. C. Kleijnen, Statistical techniques in simulation, Part 1, Marcel Dekker, Inc., New York (1974).Google Scholar
  35. 35.
    E. M. Ermakov, The Monte Carlo Method and Associated Problems [in Russian], Nauka, Moscow (1975).Google Scholar
  36. 36.
    N. P. Buslenko, Modelling Complex Systems [in Russian], Nauka, Moscow (1978).Google Scholar
  37. 37.
    B. J. Garrick, “Principles of unified system safety analysis,” Nuclear Eng. Design, No. 13, 245–321 (1970).Google Scholar
  38. 38.
    H. E. Kongsoe, RELY 4: A Monte Carlo Computer Program for Systems Reliability Analysis, Danish Automic Energy Commission, RISO-M-1500 (1972).Google Scholar
  39. 39.
    H. E. Kongsoe, “REDIS, a computer program for system reliability analysis by direct simulation,” Intern. Symp. Reliability of Nuclear Power Plants, Innsbruck (1975).Google Scholar
  40. 40.
    “Reactor safety study, an assessment of accident risk in U. S. commercial nuclear power plants,” US Nuclear Regulatory Commission, WASH-1400 (NUREG-75/014), Washington (1975).Google Scholar
  41. 41.
    E. Dressler and H. Lurz, SAFTL und CRESS, Beschreibung zweier Programmsysteme zur Berechnung der Zuverlaessigkeit von Komplexen Systemen. Programmbeschreibung, MRR-P-21, Techn. Univ., Muenchin (1975).Google Scholar
  42. 42.
    R. Daughterty and L. Schloesser, CRESSEX, Beschreibung eines Zuverlaessigkeitsrechenprogrammes zur Ermittlung wichtiger Kenngroessen von Komplexen Systemen. Programmbeschreibung, MRR-P-23, Techn. Univ., Muenchin (1976).Google Scholar
  43. 43.
    W. Gueldner, H. Polke, H. Spindler, and Zipf G. Programmsystem RALLY, zur probabilistischen Sicherheitsbeurteilung grosser technischer Systeme, GRS-Bericht, GRS-44, Garching (1982).Google Scholar
  44. 44.
    N. I. Kovalenko, Analysis of Rare Events for Evaluation of Effectiveness and Reliability of Systems [in Russian], Sov. Radio, Moscow (1980).Google Scholar
  45. 45.
    L. A. Zavadskaya, “An approach to accelerating modelling of systems with reservations,” Élektron. Modelirovanie,6, No. 3, 57–60 (1984).Google Scholar
  46. 46.
    N. Yu. Kuznetosv, “A general approach to finding the probability of fault-free operation of structurally complex systems with an analytical and statistical method,” Kibernetika, No. 3, 86–94 (1985).Google Scholar
  47. 47.
    O. T. Mar'yanovich, “On finding nonstationary availability factors for complex systems with restoring elements with an analytical and statiscal method,” Kibernetika, No. 2, 87–91 (1987).Google Scholar
  48. 48.
    I. N. Kovalenko and N. Yu. Kuznetsov, Methods for Designing Highly Reliable Systems [in Russian], Radio i Svyaz', Moscow (1988).Google Scholar
  49. 49.
    I. N. Kovalenko and A. N. Nakonechnyi, Approximate Computation and Optimization of Reliability [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  50. 50.
    V. D. Shpak, “Unbiased estimates for solution of linear integral equations of the second kind and their application in computation of reliability factors for semiMarkov systems,” Dokl. Akad. Nauk UkrSSR, Ser. A., No. 10, 81–84 (1989).MATHMathSciNetGoogle Scholar
  51. 51.
    Z. W. Birnbaum and J. D. Esary, “Modules of coherent binary systems,” J. Soc. Indust. Appl. Math., No. 13, 444–462 (1965).CrossRefGoogle Scholar
  52. 52.
    P. Chatterjee, “Modularization of fault trees: a method to reduce the cost of analysis,” in: Reliability and Fault Tree Analysis, R. E. Barlow, J. B. Fussell, and N. D. Singpurwalla (eds.), SIAM, Philadelphia (1975), pp. 101–126.Google Scholar
  53. 53.
    A. Rosenthal, “Decomposition methods for fault tree analysis,” IEEE Trans. Reliability, R-29, 136–138 (1980).Google Scholar
  54. 54.
    J. M. Wilson, “Modularizing and minimizing fault trees,”ibid.,, R-34, 320–322 (1985).Google Scholar
  55. 55.
    W. E. Vesely, R. E. Narum, PREP and KITT Computer Codes for the Automatic Evaluation of a Fault Tree, IN-1349, Idaho Nuclear Corporation Idaho Falls (1970).Google Scholar
  56. 56.
    S. N. Semanderes, ELRAFT: A computer program for the efficient logic reduction analysis of fault trees,” IEEE Trans. Nuclear Sci., NS-18, 481–487 (1971).Google Scholar
  57. 57.
    J. B. Fussell, E. B. Henry, and N. H. Marschall MOCUS—A Computer Program to Obtain Minimal Sets from Fault Trees, ANCR-1156, Aerojet Nuclear Company, Idaho Falls (1974).Google Scholar
  58. 58.
    P. K. Pande, M. E. Spector, and P. Chatterjee, Computerized Fault Tree Analysis, TREEL and MICSUP, ORC 75–3, Oper. Res. Center, Univ. of California, Berkeley (1975).Google Scholar
  59. 59.
    W. J. Van Slyke and D. E. Griffing, ALLCUTS, a fast comprehensive fault tree analysis code, ARH-ST-112, Atlantic Richfield Handford Com., Fichland, Washington (1975).Google Scholar
  60. 60.
    P. Y. Wong, FAUTRAN, A Fault Tree Analyzer, AECL-5182, Atomic Energy of Canada Limited, Chalk River Nuclear Lab., Chalk River, Ontario (1975).Google Scholar
  61. 61.
    S. Garribba, P. Mussio, F. Naldi, G. Reina, and G. Volta, “Efficient construction of minimal cut sets from fault trees”, IEEE Trans. Reliability, R-26, 88–94 (1977).Google Scholar
  62. 62.
    R. C. Erdmann, J. E. Kelly, H. R. Kirch, F. L. Leverenz, and E. T. Rumble “A method for quantifying logic models for safety analysis,” in: Nuclear Systems Reliability Engineering and Risk Assessment, J. B. Fussell, and G. R. Burdick (eds.), SIAM, Philadelphia (1975), pp. 732–754.Google Scholar
  63. 63.
    D. M. Rasmuson and N. H. Marshall, FATRAM, A core efficient cut-set algorithm” IEEE Trans. Reliability, R-27, 250–253 (1978).Google Scholar
  64. 64.
    K. Nakashima and Y. Hattori, “An efficient bottom-up algorithm for enumerating minimal cut sets of fault trees,” ibid.,, R-28, 353–357 (1979).Google Scholar
  65. 65.
    A. Becker and L. Camarinopoulos, RISA. Programmbeschreibung. Inst. fuer Kerntechnik, TU Berlin (1981).Google Scholar
  66. 66.
    R. A. Pullen, AFTP fault tree analysis program,” IEEE Trans. Reliability, R-33, 171 (1984).Google Scholar
  67. 67.
    A. Rosenthal, “Approaches to comparing cut-set enumeration algorithms,”ibid.,, R-28, 62–65 (1979).Google Scholar
  68. 68.
    L. Caldarola and A. Wickenhaeuser, “The Karlsruhe computer program for the evaluation of the availability and reliability of complex repairable systems, Nuclear Eng. Design, No. 43, 463–470 (1977).Google Scholar
  69. 69.
    W. E. Vesely and F. F. Goldberg, “Time dependent unavailability of nuclear safety systems,” IEEE Trans. Reliability, R-26, 257–260 (1977).Google Scholar
  70. 70.
    M. Atli, S. Contini, C. L. Van der Muyzenberg, and G. Volta, “Fault tree analysis by list-processing techniques,” in: Synthesis and Analysis Methods for Safety and Reliability Studies, G. Apostolakia, S. Garribba, and G. Volta (eds.), Plenum, New York (1978), pp. 5–32.Google Scholar
  71. 71.
    F. A. Patterson-Hine and B. V. Koen, “Direct evaluation of fault trees using object-oriented programming techniques,” IEEE Trans. Reliability, No. 38, 186–192 (1989).CrossRefGoogle Scholar
  72. 72.
    RELTREE. User's Manual, Vesion 2.0, Relcon AB, Sweden (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • N. Yu. Kuznetsov

There are no affiliations available

Personalised recommendations