Journal of Mathematical Sciences

, Volume 79, Issue 5, pp 1320–1324 | Cite as

Fundamental rectangles of admissible lattices

  • Kh. Kh. Ruzimuradov


Let Λ be a unimodular lattice in ℝ2, μ a homogeneous minimum of Λ; let P(a,b)⊂ℝ2 be a rectangle with vertices at the points (a,0), ...(0,b), P(a, b)+X its image under the translation by a vector X ∈ ℝ2. We prove that there exists a sequence of positive numbers v1<v2<...<vk<... with\(2\sqrt {2\mu } ^{ - 2} \upsilon _{k - 1} > \upsilon _k\), such that for u>μ the rectangle P(u, vk)+X contains T=S(P)+R points of Λ, where |R|<5; here S(P) is the area of the rectangle. Bibliography: 4 titles.


Unimodular Lattice Admissible Lattice Homogeneous Minimum Fundamental Rectangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. W. S. Cassels,An Introduction to the Geometry of Numbers, Springer, Berlin et al. (1959).Google Scholar
  2. 2.
    B. F. Skubenko, “Minimums of decomposable forms of degreen inn variables,”Zap. Nauchn. Semin. LOMI,183, 142–154 (1990).MATHGoogle Scholar
  3. 3.
    M. M. Skriganov, “Uniform distributions and geometry of numbers” [in Russian], Preprint LOMI P-6-91, Leningrad (1991).Google Scholar
  4. 4.
    M. M. Skriganov, “On integer points in polygons,”Prépublication de l'Institut Fourier,204 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Kh. Kh. Ruzimuradov

There are no affiliations available

Personalised recommendations