Helgoländer Meeresuntersuchungen

, Volume 43, Issue 1, pp 29–43 | Cite as

Meiofaunal emergence from intertidal sediment measured in the field: significant contribution to nocturnal planktonic biomass in shallow waters

  • W. Armonies


Field studies on the occurrence of meiobenthos in the water column above intertidal sandflats have been performed near the Island of Sylt in the northern Wadden Sea. Swimming meiobenthos was strongly dominated by harpacticoid copepods. Many of them have a semiplanktonic life-style. They rest in superficial sediment layers at low tide and swin in the water column at high tide. Swimming activity correlated negatively with light. The abundance in the water column was one order of magnitude higher during the night. Strong currents caused by storm tides significantly decreased meiobenthic abundance in the water column. Light and flow being constant, no significant changes of meiobenthic abundance per unit area occurred over a tidal cycle. Since holoplankton and meroplankton abundances correlated positively with the height of the water column, semiplanktonic meiobenthos may dominate the mesozooplankton in shallow waters. On an average, emergence of meiobenthos increased the mesozooplanktonic biomass by about 2% during diurnal high tides over the entire tidal cycle, and by about 50% during nocturnal high tides. Because of seasonal cycles of the dominant harpacticoids, this high contribution to planktonic biomass may be a summer phenomenon.


Water Column Shallow Water High Tide Tidal Cycle Swimming Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Alldredge, A. L. & King J. M., 1977. Distribution, abundance, and substrate preferences of demersal reef zooplankton at Lizard Island lagoon, Great Barrier Reef. — Mar. Biol.41, 317–333.CrossRefGoogle Scholar
  2. Alldredge, A. L. & King, J. M., 1980. Effects of moonlight on the vertical migration patterns of demersal zooplankton. — J. exp. mar. Biol. Ecol.44, 133–156.CrossRefGoogle Scholar
  3. Alldredge, A. L. & King, J. M., 1985. The distance demersal zooplankton migrate above the benthos: implications for predation. — Mar. Biol.84, 253–260.CrossRefGoogle Scholar
  4. Amours, D. de, 1988. Vertical distribution and abundance of natant harpacticoid copepods on a vegetated tidal flat. — Neth. J. Sea Res.22, 161–170.Google Scholar
  5. Anger, K. & Valentin, C., 1976. In situ studies on the diurnal activity pattern ofDiastylis rathkei (Cumacea, Crustacea) and its importance for the “hyperbenthos”. — Helgoländer wiss. Meeresunters.28, 138–144.Google Scholar
  6. Armonies, W., 1988a. Active emergence of meiofauna from intertidal sediment. — Mar. Ecol. Prog. Ser.43, 151–159.Google Scholar
  7. Armonies, W., 1988b. Hydrodynamic factors affecting behaviour of intertidal meiobenthos. —Ophelia28, 183–193.Google Scholar
  8. Armonies, W., 1988c. Physical factors influencing active emergence of meiofauna from boreal intertidal sediment. — Mar. Ecol. Prog. Ser.49, 277–286.Google Scholar
  9. Decho, A. W., 1986. Water-cover influences on diatom ingestion rates by meiobenthic copepods. —Mar. Ecol. Prog. Ser.33, 139–146.Google Scholar
  10. Faubel, A., 1982. Determination of individual meiofauna dry weight values in relation to definite size classes. — Cah. Biol. mar.23, 339–345.Google Scholar
  11. Fenchel, T. M., 1978. The ecology of micro- and meiobenthos. — A. Rev. Ecol. Syst.9, 99–121.Google Scholar
  12. Fulton, R. s., 1984. Distribution and community structure of marine copepods. — Estuaries7, 38–50.Google Scholar
  13. Gage, J. & Geekie, A. D., 1973. Community structure of the benthos in Scottish sea-lochs. II. Spatial pattern. — Mar. Biol.19, 41–53.CrossRefGoogle Scholar
  14. Hammer, R. M., 1981. Day-night differences in the emergence of demersal zooplankton from a sand substrate in a kelp forest. — Mar. Biol.62, 275–280.CrossRefGoogle Scholar
  15. Hauspie, R. & Polk, P., 1973. Swimming behavior patterns in certain benthic harpacticoids (Copepoda). — Crustaceana25, 95–103.Google Scholar
  16. Hesthagen, I. H., 1973. Diurnal and seasonal variations in the near-bottom fauna — the hyperbenthos — in one of the deeper channels of the Kieler Bucht (Western Baltic). — Kieler Meeresforsch.29, 116–140.Google Scholar
  17. Hickel, W., 1975. The mesozooplankton in the wadden sea of Sylt (North Sea). — Helgoländer wiss. Meeresunters.27, 254–262.CrossRefGoogle Scholar
  18. Hicks, G. R. F., 1986. Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. — Mar. Ecol. Prog. Ser.31, 159–170.Google Scholar
  19. Hicks, G. R. F., 1988. Sediment rafting: a novel mechanism for the small-scale dispersal of intertidal estuarine meiofauna. — Mar. Ecol. Prog. Ser.48, 69–80.Google Scholar
  20. Hobson, E. S. & Chess, J. R., 1979. Zooplankters that emerge from the lagoon floor at night at Kure and Midway atolls, Hawaii. — Fish. Bull. U.S.77, 275–280.Google Scholar
  21. Jacoby, C. A. & Greenwood, J. G., 1988. Spatial, temporal, and behavioral patterns in emergence of zooplankton in the lagoon of Heron Reef, Great Barrier Reef, Australia. — Mar. Biol.97, 303–328.CrossRefGoogle Scholar
  22. Martens, P., 1980. Beiträge zum Mesozooplankton des Nordsylter Wattenmeeres. — Helgoländer Meeresunters.34, 41–53.Google Scholar
  23. Mielke, W., 1975. Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. — Mikrofauna Meeresboden52, 1–134.Google Scholar
  24. Mielke, W., 1976. Ökologie der Copepoda eines Sandstrandes der Nordseeinsel Sylt. — Mikrofauna Meeresboden59, 1–86.Google Scholar
  25. Noodt, W., 1957. Zur Ökologie der Harpacticoidea (Crust. Cop.) des Eulitorals der Deutschen Meeresküste und der angrenzenden Brackgewässer. — Z. Morph. Ökol. Tiere46, 149–242.CrossRefGoogle Scholar
  26. Ohlhorst, S. L., 1982. Diel migration patterns of demersal reef zooplankton. — J. exp. mar. Biol. Ecol.60, 1–15.CrossRefGoogle Scholar
  27. Palmer, M. A., 1984. Invertebrate drift: behavioral experiments with intertidal meiobenthos. — Mar. Behav. Physiol.10, 235–253.Google Scholar
  28. Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. — Mar. Ecol. Prog. Ser.48, 81–91.Google Scholar
  29. Palmer, M. A. & Brandt, R. R., 1981. Tidal variation in sediment densities of marine benthic copepods. — Mar. Ecol. Prog. Ser.4, 207–212.Google Scholar
  30. Palmer, M. a. & Gust, G., 1985. Dispersal of meiofauna in a turbulent tidal creek. — J. mar. Res.43, 179–210.Google Scholar
  31. Porter, J. W. & Porter, K. G., 1977. Quantitative sampling of demersal plankton migrating from different coral reef substrates. — Limnol. Oceanogr.22, 553–556.Google Scholar
  32. Reise, K., 1985. Tidal flat ecology. Springer, Berlin, 191 pp.Google Scholar
  33. Sachs, L., 1984. Angewandte Statistik. Springer, Berlin, 552 pp.Google Scholar
  34. Sainte-Marie, B. & Brunel, P., 1985. Suprabenthic gradients of swimming activity by cold-water gammaridean amphipod Crustacea over a muddy shelf in the Gulf of Saint Lawrence. — Mar. Ecol. Prog. Ser.23, 57–69.Google Scholar
  35. Sibert, J. R., 1981. Intertidal hyperbenthic populations in the Nanaimo estuary. — Mar. Biol.64, 259–265.Google Scholar
  36. Walters, K., 1988. Diel vertical migration of sediment-associated meiofauna in subtropical sand and seagrass habitats. — J. exp. mar. Biol. Ecol.117, 169–186.CrossRefGoogle Scholar
  37. Walters, K. & Bell, S. S., 1986. Diel patterns of active vertical migration in seagrass meiofauna. — Mar. Ecol. Prog. Ser.34, 95–103.Google Scholar
  38. Widbom, B., 1984. Determination of average individual dry weights in different sieve fractions of marine meiofauna. — Mar. Biol.84, 101–108.CrossRefGoogle Scholar
  39. Willems, K. A., Sharma, Y., Heip, C. & Sandee, A. J. J., 1984. Long-term evolution of the meiofauna at a sandy station in Lake Grevelingen, The Netherlands. — Neth. J. Sea Res.18, 418–433.Google Scholar

Copyright information

© Biologische Anstalt Helgoland, Hamburg 1989

Authors and Affiliations

  • W. Armonies
    • 1
  1. 1.Biologische Anstalt Helgoland (Wadden Sea Institute Sylt)ListFederal Republic of Germany

Personalised recommendations