Helgoländer Meeresuntersuchungen

, Volume 44, Issue 3–4, pp 411–424 | Cite as

Metals in molluscs and associated bottom sediments of the southern baltic

  • Piotr Szefer
  • Krystyna Szefer


The concentration of Zn, Cu, Pb, Cd, Ni, Co, Ag, Mn, Fe, Ca, Mg, K and Na in molluscsMacoma balthica, Mya arenaria, Cardium glaucum, Mytilus edulis andAstarte borealis from the southern Baltic was determined. The surface sediments and ferromanganese concretions associated with the molluscs were also analysed for concentration of these metals. Species- and regiondependent differences in the metal levels of the organisms were observed. The properties of molluscs analysed which have a tendency toward elevated biological tolerance of selected trace metals were specified. The interelement relationship between metal concentrations in the soft tissue and the shell was estimated and was discussed.


Waste Water Soft Tissue Water Management Water Pollution Metal Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Al-Dabbas, M.A.M., Hubbard, F. H. & McManus, J., 1984. The shell ofMytilus as an indicator of zonal variations of water quality within an estuary. — Estuar. coast. Shelf Sci.18, 263–270.Google Scholar
  2. Amiard, J. C., Amiard-Triquet, C., Berthet, B. & Métayer, C., 1986. Contribution to the exotoxicological study of cadmium, lead, copper and zinc in the musselMytilus edulis. — Mar. Biol.90, 425–431.CrossRefGoogle Scholar
  3. Barron, L. C. & Wolowicz, M., 1981. A preliminary outline of theMytilus edulis population from Gdańsk Bay. — Oceanografia8, 127–140.Google Scholar
  4. Bertine, K. K. & Goldberg, E. D., 1972. Trace elements in clams, mussels and shrimp. — Limnol. Oceanogr.17, 877–884.Google Scholar
  5. Bloom, H. & Ayling, G. M., 1977. Heavy metals in the Derwent Estuary. — Environ. Geol.2, 3–22.Google Scholar
  6. Boström, K., Burman, I. O., Ponter, C. & Ingri, J., 1981. Selective removal of trace elements from the Baltic by suspended matter. — Mar. Chem.10, 335–354.Google Scholar
  7. Boström, K., Wilborg, L. & Ingri, J., 1982. Geochemistry and origin of ferromanganese concretions in the Gulf of Bothnia. — Mar. Geol.50, 1–24.Google Scholar
  8. Brügmann, L., 1981. Heavy metals in the Baltic Sea. — Mar. Pollut. Bull.12, 214–218.Google Scholar
  9. Bryan, G. W., 1980. Recent trends in research on heavy-metal contamination in the sea. — Helgoländer Meeresunters.33, 6–25.Google Scholar
  10. Bryan, G. W., 1983. Brown seaweed,Fucus vesiculosus, and the gastropod,Littorina littoralis, as indicators of trace-metal availability in estuaries. — Sci. total Environ.28, 91–104.Google Scholar
  11. Brzezińska, A., Trzosińska, A., Żmijewska, W. & Wódkiewicz, L., 1984. Trace metals in some organisms from the southern Baltic. — Oceanologia18, 79–94.Google Scholar
  12. Carriker, M. R., Palmer, R. E. & Prezant, R. S., 1980a. Functional ultramorphology of the dissoconch valves of the oysterCrassostrea virginica. — Proc. natn. Shellfish. Ass.70, 139–183.Google Scholar
  13. Carriker, M. R., Palmer, R. E., Sick, L. V. & Johnson, C. C., 1980b. Interaction of mineral elements in sea water and shell of oysters [Crassostrea virginica (Gmelin)] cultured in controlled and natural systems. — J. exp. mar. Biol. Ecol.46, 279–296.CrossRefGoogle Scholar
  14. Carriker, M. R., Swann, C. P. & Ewart, J. W., 1982. An exploratory study with the proton microprobe of the ontogenetic distribution of 16 elements in the shell of living oysters (Crassostrea virginica) — Mar. Biol.69, 235–246.CrossRefGoogle Scholar
  15. Chow, T. J., Snyder, H. G. & Snyder, C. B., 1976. Mussels (Mytilus sp.) as an indicator of lead pollution. — Sci. total Environ.6, 55–63.CrossRefPubMedGoogle Scholar
  16. Coleman, N., Mann, T. F., Mobley, M. & Hickman, N., 1986.Mytilus edulis planulatus: an “integrator” of cadmium pollution?. — Mar. Biol.92, 1–5.CrossRefGoogle Scholar
  17. Cossa, D., Bourget, E., & Piuze, J., 1979. Sexual maturation as a source of variation in the relationship between cadmium concentration and body weight ofMytilus edulis L. — Mar. Pollut. Bull.10, 174–176.Google Scholar
  18. Cossa, D., Bourget, E., Pouliot, D., Piuze, J. & Chanut, J. P., 1980. Geographical and seasonal variations in the relationship between trace metal content and body weight inMytilus edulis. —Mar. Biol.58, 7–14.CrossRefGoogle Scholar
  19. Davies, I. M. & Pirie, J. M., 1980. Evaluation of a “mussel watch” project for heavy metals in Scottish coastal waters. — Mar. Biol.57, 87–93.CrossRefGoogle Scholar
  20. Di Giulio, R. T. & Scanlon, P. F., 1985. Heavy metals in aquatic plants, clams and sediments from the Chesapeake Bay, U.S.A. Implications for waterfowl. — Sci. total. Environ.41, 259–274.Google Scholar
  21. Farrington, J. W., Goldberg, E. D., Risebrough, R. W., Martin, J. H. & Bowen, V. T., 1983. U.S. “Mussel Watch” 1976–1978: An overview of trace metal, DDE, PCB, hydrocarbon, and artificial radionuclide data. — Environ. Sci. Technol.17, 490–496.CrossRefGoogle Scholar
  22. Ferrell, R. E., Carville, T. E. & Martinez, J. D., 1973. Trace metals in oyster shells. — Environ. Lett.4, 311–316.PubMedGoogle Scholar
  23. Galloway, W. B., Lake, J. L., Phelps, D. K., Rogerson, P. F., Bowen, V. T., Farrington, J. W., Goldberg, E. D., Laseter, J. L., Lawler, G. C., Martin, J. H. & Risebrough, R. W., 1983. The mussel watch: intercomparison of trace level constituent determination. — Environ. Toxicol. Chem.2, 395–410.Google Scholar
  24. Gault, N. F. S., Tolland, E. L. C. & Parker, J. G., 1983. Spatial and temporal trends in heavy metal concentrations in mussels from Northern Ireland coastal waters. — Mar. Biol.77, 307–316.CrossRefGoogle Scholar
  25. Goldberg, E. D., 1975. The mussel watch — a first step in a global marine monitoring. — Mar. Pollut. Bull.6, 111.Google Scholar
  26. Goldberg, E. D., Bowen, V. T., Farrington, J. W., Harvey, G., Martin, J. H., Parker, P. L., Risebrough, R. W., Robertson, W., Schneider, W. & Gamble, E., 1978. The mussel watch. — Environ. Conserv.5, 101–125.Google Scholar
  27. Goldberg, E. D., Koide, M., Hodge, Y., Flegal, A. R. & Martin, J., 1983. U.S. Mussel Watch: 1977–1978. Results on trace metals and radionuclides. — Estuar. coast. Shelf Sci.16, 69–93.CrossRefGoogle Scholar
  28. Hung, T.-Ch., Kuo, Ch.-Y. & Chen, M.-H., 1981. Mussel Watch in Taiwan, Republic of China. (1) Bioaccumulative factors of heavy metals. — Acta oceanogr., Taiwan12, 67–83.Google Scholar
  29. Hung, T.-Ch., Kuo, Ch.-Y. & Chen, M.-H., 1983. Mussel Watch in Taiwan, Republic of China. (2) Seasonal bioaccumulative factors of heavy metals. — Bull. Inst. Chem. Acad. Sin.30, 49–62.Google Scholar
  30. Johnson, D. C. & D'Auria, J. M., 1980. Mussels (Mytilus edulis) as point source indicators of trace metal pollution. — Mar. Pollut. Bull.11, 261–263.Google Scholar
  31. Julshamn, K., 1981. Studies on major and minor elements in molluscs in western Norway. I. Geographical variations in the contents of 10 elements in oyster (Ostrea edulis), common mussel (Mytilus edulis) and brown seaweed (Ascophyllum nodosum) from three oyster farms. — Fisk. Dir. Skr. (Ser. Ernaering),1, 161–182.Google Scholar
  32. Karbe, L., Schnier, Ch. & Siewers, H. O., 1977. Trace elements in mussels (Mytilus edulis) from coastal areas of the North Sea and the Baltic. Multielement analyses using instrumental neutron activation analysis. — J. radionanalyt. Chem.37, 927–943.Google Scholar
  33. Koide, M., Lee, D. S. & Goldberg, E. D., 1982. Metal and transuranic records in mussel shells, byssal threads and tissues. — Estuar. coast. Shelf Sci.15, 679–695.Google Scholar
  34. Krishnaswami, S. & Sarin, M. M., 1976. Atlantic surface particulates: composition, settling rates and dissolution in the deep sea. — Earth Planet. Sci. Lett.32, 430–440.Google Scholar
  35. Langston, W. J., 1986. Metals in sediments and benthic organisms in the Mersey Estuary. — Estuar. coast. Shelf Sci.23, 239–261.CrossRefGoogle Scholar
  36. Li, Y.-H., 1982. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments. — Geochim. cosmochim. Acta46, 1053–1060.Google Scholar
  37. Luoma, S. N. & Bryan, G. W., 1978. Factors controlling the availability of sediment-bound lead to the estuarine bivalveScrobicularia plana. — J. mar. biol. Ass. U. K.58, 793–802.Google Scholar
  38. Luoma, S. N. & Bryan, G. W., 1979. Trace metal bioavailability: modeling chemical and biological interactions of sediment-bound zinc. In: Chemical modeling in aqueous systems. Ed. by E. A. Jenne. Am. Chem. Soc., Washington, D. C., 577–609.Google Scholar
  39. Luoma, S. N. & Bryan, G. W., 1981. A statistical assessment of the form of frace metals in oxidized estuarine sediments employing chemical extractants. — Sci. total Environ.17, 165–196.CrossRefGoogle Scholar
  40. Luoma, S. N. & Jenne, E. A., 1976a. Factors affecting the availability of sediment-bound cadmium to the estuarine, deposit-feeding clam,Macoma balthica. In: Proceedings, fourth national symposium on radioecology. Ed by C. E. Cushing. Ecol. Soc. Am., Stroudsburg, Pa, 283–290.Google Scholar
  41. Luoma, S. N. & Jenne, E. A., 1976b. Estimating bioavailability of sediment-bound trace metals with chemical extractants. In: A symposium on trace substances in environmental health. Ed. by D. D. Hemphill, Univ. of Missouri, Columbia, 343–351.Google Scholar
  42. Luoma, S. N. & Jenne, E. A., 1977. The availability of sediment-bound cobalt, silver, and zinc to a deposit-feeding clam. In: Biological implications of metals in the environment. Ed. by R. E. Wildung & H. Druckers. NTIS, Springfield, VA, 213–230.Google Scholar
  43. Lomniewski, K., Mańkowski, W. & Zaleski, J., 1975. Morze Baltyckie. Państwowe Wydawnictwo Naukowe, Warsaw, 508 pp.Google Scholar
  44. Martincić, D., Nürnberg, H. W., Stoeppler, M. & Branica, M., 1984. Bioaccumulation of heavy metals by bivalves from Lim Fjord (North Adriatic Sea). — Mar. Biol.81, 177–188.Google Scholar
  45. Möller, H., Schneider, R. & Schnier, Ch., 1983. Trace metal and PCB content of mussels (Mytilus edulis) from the southwestern Baltic Sea. — Int. Revue ges. Hydrobiol.68, 633–647.Google Scholar
  46. Phillips, D. J. H., 1976a. The common musselMytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. — Mar. Biol.38, 59–69.Google Scholar
  47. Phillips, D. J. H., 1976b. The common musselMytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. II. Relationship of metal in the mussel to those discharged by industry. — Mar. Biol.38, 71–80.Google Scholar
  48. Phillips, D. J. H., 1977a. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — a review. — Environ. Pollut.13, 281–317.Google Scholar
  49. Phillips, D. J. H., 1977b. The common musselMytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium. — Mar. Biol.43, 283–291.CrossRefGoogle Scholar
  50. Phillips, D. J. H., 1977c. Effects of salinity on the net uptake of zinc by the common musselMytilus edulis. — Mar. Biol.41, 79–88.CrossRefGoogle Scholar
  51. Phillips, D. J. H., 1978. The common musselMytilus edulis as an indicator of trace metals in Scandinavian water. II. Lead, iron and manganese. — Mar. Biol.46, 147–156.CrossRefGoogle Scholar
  52. Phillips, D. J. H., 1980. Quantitative aquatic biological indicators, their use to monitor trace metal and organochlorine pollution. Appl. Sci. Publ., London, 488 pp.Google Scholar
  53. Pilkey, O. H. & Goodell, H. G., 1963. Trace elements in recent mollusk shells. — Limmol. Oceanogr.8, 137–148.Google Scholar
  54. Pilkey, O. H. & Goodell, H. G., 1964. Comparison of the composition of fossil and recent mollusk shells. — Bull. geol. Soc. Am.75, 217–228.Google Scholar
  55. Pilkey, O. H. & Harriss, R. C., 1966. The effect of intertidal environment on the composition of calcareous skeletal material. — Limnol. Oceanogr.11, 381–385.Google Scholar
  56. Popham, J. D. & D'Auria, J. M., 1983a. Combined effect of body size, season, and location on trace element levels in mussels (Mytilus edulis). — Archs environ. Contam. Toxicol.12, 1–14.Google Scholar
  57. Popham, J. D. & D'Auria, J. M., 1983b. Statistical approach for deciding if mussels (Mytilus edulis) have been collected from a water body polluted with trace metals. — Environ. Sci. Technol.17, 576–582.CrossRefGoogle Scholar
  58. Ritz, D. A., Swain, R. & Elliot, N. G., 1982. Use of theMytilus edulis planulatus (Lamarck) in monitoring heavy metal levels in seawater. — Aust. J. mar. Freshwat. Res.33, 491–506.CrossRefGoogle Scholar
  59. Rosenberg, G. D., 1980. An ontogenetic approach of the environmental significance of bivalve shell chemistry. In: Skeletal growth of aquatic organisms. Ed. by D. C. Rhoads & R. A. Lutz. Plenum Press, New York 133–168.Google Scholar
  60. Segar, D. A., Collins, J. D. & Riley, J. P., 1971. The distribution of the major and some minor elements in marine animals. Part II. Molluscs. — J. mar. biol. Ass. U.K.51, 131–136.Google Scholar
  61. Slabyj, B. M. & Carpenter, P. N., 1977. Processing effect on proximate composition and mineral content of meats of blue mussels (Mytilus edulis). — J. Food Sci.42, 1153–1155.Google Scholar
  62. Sturesson, U., 1976. Lead enrichment in shells ofMytilus edulis. — Ambio5, 253–256.Google Scholar
  63. Sturesson, U., 1978. Cadmium enrichment in shells ofMytilus edulis. — Ambio7, 121–125.Google Scholar
  64. Suess, E. & Djafari, D., 1977. Trace metal distribution in Baltic Sea ferromanganese concretions: inferences on accretion rates. — Earth Planet. Sci. Lett.35, 49–54.CrossRefGoogle Scholar
  65. Szefer, P., 1986. some metals in benthic invertebrates in Gdańsk Bay. — Mar. Pollut. Bull.17, 503–507.Google Scholar
  66. Szefer, P., 1990a. Interelement relationship in organisms and bottom sediments of the southern Baltic. — Sci. total Environ.95, 119–130.Google Scholar
  67. Szefer, P., 1990b. Mass-balance of metals and identification of their sources in both river and fallout fluxes near the Gdańsk Bay. Baltic Sea. — Sci. total Environ.95, 131–139.Google Scholar
  68. Szefer, P. & Skwarzec, B., 1988. Distribution and possible sources of some elements in the sediment cores of the southern Baltic. — Mar. Chem.23, 109–129.CrossRefGoogle Scholar
  69. Szefer, P. & Szefer, K., 1985. Occurrence of ten metals inMytilus edulis L. andCardium glaucum L. from the Gdańsk Bay. — Mar. Pollut. Bull.16, 446–450.Google Scholar
  70. Szefer, P. & Wenne, R., 1987. Concentration of uranium and thorium in molluscs inhabiting Gdańsk Bay, Baltic Sea. — Sci. total Environ.65, 191–202.Google Scholar
  71. Tervo, V., Erkomaa, K., Sandler, H., Miettinen, V., Parmanne, R. & Aro, E., 1980. Contents of metals and chlorinated hydrocarbons in fish and benthic invertebrates in the Gulf of Bothnia and in the Gulf of Finland in 1979. — Aqua fenn.10, 42–57.Google Scholar
  72. Thomson, E. A., Luoma, S. N., Johansson, C. E. & Cain, D. J., 1984. Comparison of sediment and organisms in identifying sources of biologically available trace metal contamination. — Wat. Res.18, 755–765.CrossRefGoogle Scholar
  73. Wada, K. & Suga, S., 1976. The distribution of some elements in the shell of freshwater and marine bivalves by electron microprobe analysis. — Bull. natn. Pearl Res. Lab.20, 2219–2240.Google Scholar
  74. Wenne, R. & Klusek, Z., 1985. Longevity, growth and parasites ofMacoma balthica L. in the Gdańsk Bay (South Baltic). — Polskie Archwm Hydrobiol.32, 31–45.Google Scholar
  75. Wenne, R. & Wiktor, K., 1982. Benthic fauna of the inshore waters of Gdańsk Bay. — Stud. Mater. Oceanol.39, 137–171 (in Polish, with an English abstract).Google Scholar
  76. Wołowicz, M., 1984.Cardium glaucum (Poiret, 1789) population from Gdańsk Bay (Baltic Sea). —Polskie Archwm Hydrobiol.31, 33–44.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1990

Authors and Affiliations

  • Piotr Szefer
    • 1
  • Krystyna Szefer
    • 1
  1. 1.Department of Analytical ChemistryMedical AcademyGdańskPoland

Personalised recommendations