Skip to main content

Advertisement

Log in

Dynamic aspects of glutathione metabolism in obstructive jaundice

  • Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The dynamic aspects of glutathione metabolism during obstructive jaundice were analyzed in rats. Plasma bilirubin levels increased after ligation of the bile duct, with a concomitant increase in hepatorenal glutathione levels. When the bile duct was recanalized, plasma bilirubin levels rapidly decreased, with a concomitant decrease in hepatorenal glutathione levels. The half-life of hepatic glutathione turnover increased markedly after bile duct obstruction, returning to normal after recanalization of the bile duct. Intravenous administration of a loading dose of bilirubin inhibited the biliary secretion of glutathione in a dose-dependent manner. On the other hand, renal glutathione efflux increased markedly after bile duct obstruction. These observations suggest that glutathione status is significantly affected in obstructive jaundice, predominantly due to the inhibition of hepatic secretion by increased bilirubin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chowdhury JR, Wolkoff AW, Arias IM. Bile pigment metabolism and porphyria. The liver annual 2. Amsterdam: Elsevier, 1982;331–358.

    Google Scholar 

  2. Bremer J. Specific difference in the conjugation of free bile acids with taurine and glycine. Biochem J 1956;63:507–513.

    CAS  PubMed  Google Scholar 

  3. Wilkinson SP, Moodie H, Stamatakis JD. Endotoxicemia and renal failure in cirrhosis and obstructive jaundice. BMJ 1976;2:1415–1420.

    CAS  PubMed  Google Scholar 

  4. Mizumoto S, Harada K, Takano S, et al. Role of serum bile acid in AGML formation under obstructive jaundice. Experimental ulcer. Tokyo: Yunnsha, 1984;173–178.

    Google Scholar 

  5. Meister A. Metabolism and transport of glutathione and otherglutamyl compounds. Function of glutathione. New York: Raven, 1983;1–22.

    Google Scholar 

  6. Kosower ND, Kosower EM. The glutathione status of cells. Int Rev Cytol 1978;54:104–160.

    Google Scholar 

  7. Inoue M. Interorgan metabolism and membrane transport of glutathione and related compounds. Renal biochemistry. Amsterdam: Elsevier, 1985;225–270.

    Google Scholar 

  8. Inoue M, Saito Y, Hirata E, et al. Regulation of redox status of plasma proteins by metabolism and transport of glutathione and related compounds. J Protein Chem 1987;6:207–225.

    Article  CAS  Google Scholar 

  9. Inoue M, Kinne R, Tran T, et al. Glutathione transport across hepatocyte plasma membrane. Eur J Biochem 1984;138:491–495.

    Article  CAS  PubMed  Google Scholar 

  10. Ookhtens M, Lyon I, Kaplowitz N. Effect of age on sinusoidal release of hepatic glutathione from the perfused rat liver. Biochem Pharmacol 1987;36:4015–4017

    Article  CAS  PubMed  Google Scholar 

  11. Hirota M, Inoue M, Ando Y, et al. Role of hepatic glutathione turnover in the pathogenesis of stress-induced gastric mucosal injury. Medical, biochemical and chemical aspects of free radicals. Amsterdam: Elsevier, 1989;1437–1440.

    Google Scholar 

  12. Hirota M, Inoue M, Ando Y, et al. Inhibition of stress-induced gastric injury by glutathione. Gastroenterology 1989;97:852–859.

    Google Scholar 

  13. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal Biochem 1969;27:502–522.

    Article  CAS  PubMed  Google Scholar 

  14. Hirayama K, Yasutake A, Inoue M. Effect of sex hormone on glutathione metabolism and the fate of methylmercury in mice. Biochem Pharmacol 1987;36:1919–1924.

    CAS  PubMed  Google Scholar 

  15. Jendrassik L, Grof P. Verfahren zur photometrischen Bestimmung des Bilirubins im Harn. Biochem Ztschr 1937;296: 71–79.

    Google Scholar 

  16. Orlowski M, Meister A. Isolation of highly purified γ-glutamyl-cysteine synthetase from rat kidney. Biochemistry 1971; 10:372–380.

    Article  CAS  PubMed  Google Scholar 

  17. Richman PG, Meister A. Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 1975;250:1422–1426.

    CAS  PubMed  Google Scholar 

  18. Meister A, Tate SS. Glutathione and related gamma-glutamyl compounds: Biosynthesis and utilization. Annu Rev Biochem 1976;45:559–604.

    Article  CAS  PubMed  Google Scholar 

  19. Sies H, Bartoli GM, Burk R, et al. Glutathione efflux from the perfused rat liver after phenobarbital treatment, during drug oxidations, and in selenium deficiency. Eur J Biochem 1978;89: 113–118.

    Article  CAS  PubMed  Google Scholar 

  20. Bartoli GM, Sies H. Reduced and oxidized glutathione efflux from liver. FEBS Lett 1978;86:89–91.

    Article  CAS  PubMed  Google Scholar 

  21. Ookhtens M, Hobdy K, Corvasce MC, et al. Sinusoidal efflux of glutathione in the perfused rat liver. J Clin Invest 1985;75:258–265.

    CAS  PubMed  Google Scholar 

  22. Kaplowitz N, Eberle DE, Petrini J, et al. Factors influencing the efflux of hepatic glutathione into bile in rats. J Pharm Exp Ther 1983;224:141–147.

    CAS  Google Scholar 

  23. Elferink RPJO, Ottenhoff R, Liefting W, et al. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia. J Clin Invest 1989;84:476–483.

    CAS  PubMed  Google Scholar 

  24. Sugi K, Inoue M, Morino Y. Degradation of plasma bilirubin by a bilirubin oxidase derivative which has a relatively long halflife in the circulation. Biochim Biophys Acta 1989;991:405–409.

    CAS  PubMed  Google Scholar 

  25. Broderson R. Bilirubin transport in the newborn infant, reviewed with relation to kirnicterus. J Pediatr 1980;96:349.

    Google Scholar 

  26. McDonagh AF, Palma LA, Lauff JL, et al. Origin of mammalian biliprotein and rearrangement of bilirubin glucuronides in vivo in the rat. J Clin Invest 1984;74:763–770.

    CAS  PubMed  Google Scholar 

  27. Van Breemen RB, Fenselau C. Reaction of bilirubin glucuronides with serum albumin. J Chromatogr 1986;383:387–392.

    PubMed  Google Scholar 

  28. Weiss JS, Gautam A, Lauff JJ. The clinical importance of a protein-bound fraction of serum bilirubin in patients with hyperbilirubinemia. N Engl J Med 1983;309:147–150.

    CAS  PubMed  Google Scholar 

  29. Inoue M, Morino Y. Direct evidence for the role of membrane potential in glutathione transport by renal brush border membranes. J Biol Chem 1985;260:326–331.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, M., Sugi, K. & Inoue, M. Dynamic aspects of glutathione metabolism in obstructive jaundice. J Gastroenterol 29, 588–592 (1994). https://doi.org/10.1007/BF02365440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365440

Key words

Navigation