Journal of Mathematical Sciences

, Volume 93, Issue 1, pp 42–133 | Cite as

The Colombeau generalized nonlinear analysis and the Schwartz linear distribution theory

  • V. V. Chistyakov
Article
  • 86 Downloads

Keywords

Nonlinear Analysis Distribution Theory Linear Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adamczewski, J. F. Colombeau and A. Y. Le Roux, “Convergence of numerical schemes involving powers of the Dirac delta function”,J. Math. Anal. Appl.,145, No. 1, 172–185 (1990).MathSciNetGoogle Scholar
  2. 2.
    R. A. Adams,Sobolev Spaces, Academic Press, New York, (1975).Google Scholar
  3. 3.
    W. Ambrose, “Products of distributions with values in distributions”,J. Reine Angew. Math.,315, 73–91 (1980).MATHMathSciNetGoogle Scholar
  4. 4.
    A. B. Antonevich and Ya. V. Radyno, “On a general method for constructing algebras of generalized functions”,Sov. Math. Dokl.,43, No. 3, 680–684 (1991). Translated fromDokl. Ross. Akad. Nauk,318, No. 2, 267–270 (1991).MathSciNetGoogle Scholar
  5. 5.
    P. Antosik, J. Mikusiński, and R. Sikorski,Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam (1973).Google Scholar
  6. 6.
    J. Aragona, “Théorèmes d'existence pour l'opérateur\(\bar \partial \) sur les formes différentielles généralisées”,C. R. Acad. Sci., Sér. I,300, No. 8, 239–242 (1985).MATHMathSciNetGoogle Scholar
  7. 7.
    J. Aragona, “On existence theorems for the\(\bar \partial \) operator on generalized differential forms”,Proc. London Math. Soc.,53, No. 3, 474–488 (1986).MATHMathSciNetGoogle Scholar
  8. 8.
    J. Aragona and H. A. Biagioni, “Intrinsic definition of the Colombeau algebra of generalized functions”,Anal. Math.,17, No. 2, 75–132 (1991).MathSciNetGoogle Scholar
  9. 9.
    J. Aragona and J. F. Colombeau, “On the\(\bar \partial \)-Neumann problem for generalized functions”,J. Math. Anal. Appl.,110, No. 1, 179–199 (1985).MathSciNetGoogle Scholar
  10. 10.
    J. Aragona and J. F. Colombeau, “The interpolation theorem for holomorphic generalized functions”,Ann. Polon. Math.,49, No. 2, 151–156 (1988).MathSciNetGoogle Scholar
  11. 11.
    Y. A. Barka, J. F. Colombeau, and B. Perrot, “A numerical modelling of the fluid/fluid acoustic dioptra”,J. d'Acoustique,2, No. 4, 333–346 (1989).Google Scholar
  12. 12.
    L. Berg, “Multiplication of distributions”,Math. Nachr.,76, 195–202 (1977).MATHMathSciNetGoogle Scholar
  13. 13.
    L. Berg, “Taylor's expansion in a distribution algebra”,Z. Anal. Anwend.,2, No. 3, 265–271 (1983).MATHGoogle Scholar
  14. 14.
    H. A. Biagioni, “The Cauchy problem for semilinear hyperbolic systems with generalized functions as initial conditions”,Results Math.,14, No. 3/4, 231–241 (1988).MathSciNetGoogle Scholar
  15. 15.
    H. A. Biagioni,A Nonlinear Theory of Generalized Functions, Lecture Notes Math., Vol 1421 (1990).Google Scholar
  16. 16.
    H. A. Biagioni, “Generalized solutions to nonlinear first-order systems”,Monatsh. Math.,118, Nos. 1–2, 7–20 (1994).MATHMathSciNetGoogle Scholar
  17. 17.
    H. A. Biagioni and J. F. Colombeau, “Borel's theorem for generalized functions”,Stud. Math.,81, No. 2, 179–183 (1985).MathSciNetGoogle Scholar
  18. 18.
    H. A. Biagioni and J. F. Colombeau, “Whitney's extension theorem for generalized functions”,J. Math. Anal. Appl.,114, No. 2, 574–583 (1986).MathSciNetGoogle Scholar
  19. 19.
    H. A. Biagioni and J. F. Colombeau, “New generalized functions andC functions with values in generalized complex numbers”,J. London Math. Soc. (2),33, No. 1, 169–179 (1986).MathSciNetGoogle Scholar
  20. 20.
    H. A. Biagioni and M. Oberguggenberger, “Generalized solutions to Burgers' equation”,J. Diff. Equations,97, No. 2, 263–287 (1992).MathSciNetGoogle Scholar
  21. 21.
    H. A. Biagioni and M. Oberguggenberger, “Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations”,SIAM J. Math. Anal.,23, No. 4, 923–940 (1992).MathSciNetGoogle Scholar
  22. 22.
    N. N. Bogoliubow and O. S. Parasiuk, “Über die Multiplikation der Kausalfunktion in der Quantentheorie der Felder”,Acta Math.,77, No. 3, 227–266 (1957).MathSciNetGoogle Scholar
  23. 23.
    N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov,General Principles of the Quantum Field Theory [in Russian], Nauka, Moscow (1987).Google Scholar
  24. 24.
    J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux, “Solutions généralisées discontinues de problèmes hyperboliques non conservatifs”,C. R. Acad. Sci., Sér. I,302, No. 12, 435–437 (1986).MathSciNetGoogle Scholar
  25. 25.
    J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux “Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations”,J. Math. Anal. Appl.,139, No. 2, 552–573 (1989).MathSciNetGoogle Scholar
  26. 26.
    R. A. Cerutti,Distributional products, Preprint Trab. Mat. / Inst. Argent. Mat.,179, 1–16 (1991).Google Scholar
  27. 27.
    L. Z. Cheng and B. Fisher, “Several products of distributions on ℝmProc. Roy. Soc. London, Ser. A 426, No. 1871, 425–439 (1989).MathSciNetGoogle Scholar
  28. 28.
    V. V. Chistyakov, “The Cauchy problem for a parabolic equation with nonlinear irregularity”,Mosc. Univ. Math. Bull.,41, No. 3, 54–59 (1986).MATHGoogle Scholar
  29. 29.
    V. V. Chistyakov, “On weak solutions to Burgers'-type equations with nonsmooth data”,Mat. Zametki,58, No. 3, 471–476 (1995).MATHMathSciNetGoogle Scholar
  30. 30.
    V. V. Chistyakov, “Some products of distributions in the Colombeau algebra of generalized functions”, In:Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 1. NII MIOO NGU, Novosibirsk (1995), pp. 175–184.Google Scholar
  31. 31.
    V. V. Chistyakov, “Travelling wave and delta wave solutions to the Riemann problem for a conservative system”, In:Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 2, NII MIOO NGU, Novosibirsk (1996), to appear.Google Scholar
  32. 32.
    Chr. Christov and Bl. Damyanov, “Multiplication of generalized functions”,Math. Meth. Theor. Phys.,5 (1989).Google Scholar
  33. 33.
    J. F. Colombeau,Differential Calculus and Holomorphy. Real and Complex Analysis in Locally Convex Spaces, North-Holland Math. Studies, Vol. 64, Amsterdam (1982).Google Scholar
  34. 34.
    J. F. Colombeau, “New generalized functions. Multiplication of distributions. Physical applications. Contribution of J. Sebastião e Silva”,Portugal. Math.,41, Nos. 1–4, 57–69 (1982).MATHMathSciNetGoogle Scholar
  35. 35.
    J. F. Colombeau, “Une multiplication générale des distributions”,C. R. Acad. Sci., Sér. I,296, No. 8, 357–360 (1983).MATHMathSciNetGoogle Scholar
  36. 36.
    J. F. Colombeau, “A multiplication of distributions”,J. Math. Anal. Appl.,94, No. 1, 96–115 (1983).MATHMathSciNetGoogle Scholar
  37. 37.
    J. F. Colombeau,New Generalized Functions and Multiplication of Distributions, North-Holland Math. Studies, Vol. 84, Amsterdam (1984).Google Scholar
  38. 38.
    J. F. Colombeau,New general existence results for partial differential equations in the C case, Preprint, University of Bordeaux (1984).Google Scholar
  39. 39.
    J. F. Colombeau,Elementary Introduction to New Generalized Functions, North-Holland Math. Studies, Vol. 113, Amsterdam (1985).Google Scholar
  40. 40.
    J. F. Colombeau, “Nouvelles solutions d'équations aux dérivées partielles”,C. R. Acad. Sci., Sér. I,301, No. 6, 281–283 (1985).MATHMathSciNetGoogle Scholar
  41. 41.
    J. F. Colombeau, “A new theory of generalized functions”, In: J. Mujica (ed.),Complex Analysis, Functional Analysis, and Approximation Theory, North-Holland Math. Studies, Vol. 125, Amsterdam (1986), pp. 57–65.Google Scholar
  42. 42.
    J. F. Colombeau, “Some aspects of infinite-dimensional holomorphy in mathematical physics”, In: J. A. Barroso (ed.),Aspects of Mathematics and Its Applications, Amsterdam (1986), pp. 253–263.Google Scholar
  43. 43.
    J. F. Colombeau, “Introduction to ‘new generalized functions’ and multiplication of distributions,” In: H. Hogbe-Nlend (ed.),Functional Analysis and Its Applications, ICPAM Lecture Notes; Nice, France, Aug. 25–Sept. 20, 1986, World Scientific Publ. Co., Singapore (1988), pp. 338–380.Google Scholar
  44. 44.
    J. F. Colombeau, “Generalized functions; multiplication of distributions; applications to elasticity, elastoplasticity, fluid dynamics and acoustics,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 13–27.Google Scholar
  45. 45.
    J. F. Colombeau, “Multiplication de distributions et acoustique,”J. d'Acoustique, 1, Nos. 1–2, 9–14 (1988).Google Scholar
  46. 46.
    J. F. Colombeau, “The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions,”J. Math. Phys.,30, No. 10, 2273–2279 (1989).MATHMathSciNetGoogle Scholar
  47. 47.
    J. F. Colombeau, “Multiplication of distributions,”Bull. Amer. Math. Soc.,23, No. 2, 251–268 (1990).MATHMathSciNetGoogle Scholar
  48. 48.
    J. F. Colombeau,Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes Math., Vol. 1532 (1992).Google Scholar
  49. 49.
    J. F. Colombeau and J. E. Galé, “Holomorphic generalized functions,”J. Math. Anal. Appl.,103, No. 1, 117–133 (1984).MathSciNetGoogle Scholar
  50. 50.
    J. F. Colombeau and J. E. Galé, “Analytic continuation of generalized functions,”Acta Math. Hung.,52, Nos. 1–2, 57–60 (1988).Google Scholar
  51. 51.
    J. F. Colombeau and A. Heibig,Nonconservative products in bounded variation functions, Preprint, No. 39, École Normale Supérieure de Lyon (1990).Google Scholar
  52. 52.
    J. F. Colombeau and A. Heibig, “Generalized solutions to Cauchy problems,”Monatsh. Math.,117, Nos. 1–2, 33–49 (1994).MathSciNetGoogle Scholar
  53. 53.
    J. F. Colombeau, A. Heibig, and M. Oberguggenberger,Generalized solutions to partial differential equations of evolution type, Preprint, No. 54, École Normale Supérieure de Lyon (1991).Google Scholar
  54. 54.
    J. F. Colombeau, A. Heibig, and M. Oberguggenberger, “Le problème de Cauchy dans un espace de fonctions généralisées. I,”C. R. Acad. Sci., Sér. I,317, No. 9, 851–855 (1993).MathSciNetGoogle Scholar
  55. 55.
    J. F. Colombeau, A. Heibig, and M. Oberguggenberger, “Le problème de Cauchy dans un espace de fonctions généralisées. II,”C. R. Acad. Sci., Sér. I,319, No. 11, 1179–1183 (1994).MathSciNetGoogle Scholar
  56. 56.
    J. F. Colombeau and M. Langlais, “Existence et unicité de solutions d'équations paraboliques non unéaires avec conditions initiales distributions,”C. R. Acad. Sci., Sér. I,302, No. 10, 379–382 (1986).MathSciNetGoogle Scholar
  57. 57.
    J. F. Colombeau and M. Langlais, “Generalized solutions of nonlinear parabolic equations with distributions as initial conditions,”J. Math. Anal. Appl.,145, No. 1, 186–196 (1990).MathSciNetGoogle Scholar
  58. 58.
    J. F. Colombeau, J. Laurens, and B. Perrot, “Une méthode numérique de résolution des équations de l'acoustique dans un milieu à caractéristiquesC par morceaux,” In:Colloque de Physique, Colloque C 2, supplément au t.51, No. 2 (1990), pp. 1227–1230.Google Scholar
  59. 59.
    J. F. Colombeau and A. Y. Le Roux, “Numerical techniques in elastoplasticity,” In:Nonlinear Hyperbolic Problems, Lecture Notes Math., Vol. 1270, (1987), pp. 103–114.Google Scholar
  60. 60.
    J. F. Colombeau and A. Y. Le Roux, “Multiplications of distributions in elasticity and hydrodynamics,”J. Math. Phys.,29, No. 2, 315–319 (1988).MathSciNetGoogle Scholar
  61. 61.
    J. F. Colombeau, A. Y. Le Roux, A. Noussair, and B. Perrot, “Microscopic profiles of shock waves and ambiguities in multiplications of distributions,”SIAM J. Numer. Anal.,26, No. 4, 871–883 (1989).MathSciNetGoogle Scholar
  62. 62.
    J. F. Colombeau, A. Y. Le Roux, and B. Perrot, “Multiplication de distributions et ondes de choc élastiques ou hydrodynamiques en dimension un,”C. R. Acad. Sci., Sér. I,305, No. 11, 453–456 (1987).MathSciNetGoogle Scholar
  63. 63.
    J. F. Colombeau and M. Oberguggenberger, “On a hyperbolic system with a compatible quadratic term: generalized solutions, delta waves, and multiplication of distributions,”Commun. Part. Diff. Equat.,15, No. 7, 905–938 (1990).MathSciNetGoogle Scholar
  64. 64.
    J. F. Colombeau and M. Oberguggenberger,Approximate generalized solutions and measure valued solutions to conservation laws, Preprint, No. 37, École Normale Supériure de Lyon (1990).Google Scholar
  65. 65.
    G. Dal Maso, Ph. Le Floch, and F. Murat,Definition and weak stability of nonconservative products, Preprint CMAP-CNRS, R. I. No. 272, Ecole Polytechnique, Palaiseau (France) (1993).Google Scholar
  66. 66.
    Bl. P. Damyanov, “The sheaf structure of Schwartz distributions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 33–42.Google Scholar
  67. 67.
    P. A. M. Dirac, “The physical interpretation of the quantum dynamics,”Proc. Roy. Soc. London A,113, 621–641 (1927).MATHGoogle Scholar
  68. 68.
    P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,”Proc. Roy. Soc. London A,114, 243–265 (1927).MATHGoogle Scholar
  69. 69.
    D. B. Dix, “Nonuniqueness and uniqueness in the initial-value problem for Burgers' equations,”SIAM J. Math. Anal.,27, No. 3, 708–724 (1996).MATHMathSciNetGoogle Scholar
  70. 70.
    R. E. Edwards,Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, (1965).Google Scholar
  71. 71.
    Yu. V. Egorov, “On generalized functions and linear differential equations,”Vestn. MGU, Ser. I, No. 2, 92–95 (1990).MATHGoogle Scholar
  72. 72.
    Yu. V. Egorov, “A contribution to the theory of generalized functions,”Usp. Mat. Nauk,45, No. 5, 3–40 (1990).MATHGoogle Scholar
  73. 73.
    L. Ehrenpreis, “Solutions of some problems of division I,”Amer. J. Math.,76, 883–903 (1954).MATHMathSciNetGoogle Scholar
  74. 74.
    H. G. Embacher, G. Grübl, and M. Oberguggenberger “Products of distributions in several variables and applications to zero-mass QED2,”Z. Anal. Anwendungen,11, No. 4, 437–454 (1992).MathSciNetGoogle Scholar
  75. 75.
    B. Fisher, “The product of distributions”Quart. J. Math Oxford, Ser. (2),22 No. 86, 291–298 (1971).MATHGoogle Scholar
  76. 76.
    B. Fisher, “The product of the distributions x−r and δ(r−1)(x),”Proc. Cambridge Philos. Soc.,72, No. 2, 201–204 (1972).MATHMathSciNetGoogle Scholar
  77. 77.
    B. Fisher, “Neutrices and the product of distributions,”Stud. Math.,57, 263–274 (1976).MATHGoogle Scholar
  78. 78.
    B. Fisher, “On defining the product of distributions,”Math. Nachr.,99, 239–249 (1980).MATHMathSciNetGoogle Scholar
  79. 79.
    G. B. Folland,Real Analysis. Modern Techniques and Their Applications, John Wiley & Sons, New York (1984).Google Scholar
  80. 80.
    I. M. Gel'fand and G. E. Shilov,Generalized Functions, Vol. 1, Academic Press, New York (1964).Google Scholar
  81. 81.
    A. Gonzalez Domingues and R. Scarfiello, “Nota sobre la formula\(v.p.\tfrac{1}{x} \cdot \delta = - \tfrac{1}{2}\delta '\),”Rev. Un. Mat. Argentina,1, 53–67 (1956).Google Scholar
  82. 82.
    T. Gramchev, “Semilinear hyperbolic systems and equations with singular initial data,”Monatsh. Math.,112, 99–113 (1991).CrossRefMATHMathSciNetGoogle Scholar
  83. 83.
    T. Gramchev, “Nonlinear maps in spaces of distributions,”Math. Z.,209 No. 1, 101–114 (1992).MATHMathSciNetGoogle Scholar
  84. 84.
    T. Gramchev, “Le problème de Cauchy pour des systèmes hyperboliques non-linéaires avec données initiales distributions,”Bulgar. Math. Dokl.,45, No. 8, 1–5 (1992).MathSciNetGoogle Scholar
  85. 85.
    T. Gramchev,Entropy solutions to conservation laws with singular initial data, Preprint (1992).Google Scholar
  86. 86.
    A. Heibig and M. Moussaoui, “Generalized and classical solutions of nonlinear parabolic equations,”Nonlinear Anal. Theory. Meth. Appl.,24, No. 6, 789–794 (1995).MathSciNetGoogle Scholar
  87. 87.
    E. Hopf, “The partial differential equation,u t +uu x =μu xx,”Commun. Pure Appl. Math.,3, No. 3, 201–230 (1950).MATHMathSciNetGoogle Scholar
  88. 88.
    L. Hörmander, “On the division of distributions by polynomials.,”Ark. Mat.,3, No. 54, 555–568 (1958).MATHMathSciNetGoogle Scholar
  89. 89.
    L. Hörmander,The Analysis of Linear Partial Differential Operators. Vol. I.Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin-New York (1983).Google Scholar
  90. 90.
    M. Itano, “On the multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,29, No. 1, 51–74 (1965).MATHMathSciNetGoogle Scholar
  91. 91.
    M. Itano, “On the theory of multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,30, No. 2, 151–181 (1966).MATHMathSciNetGoogle Scholar
  92. 92.
    M. Itano, “Remarks on the multiplicative products of distributions,”Hiroshima Math. J.,6, No. 2, 365–375 (1976).MATHMathSciNetGoogle Scholar
  93. 93.
    V. K. Ivanov, “Hyperdistributions and multiplication of Schwartz distributions,”Dokl. Akad. Nauk SSSR,204, No. 5, 1045–1048 (1972).MATHMathSciNetGoogle Scholar
  94. 94.
    V. K. Ivanov, “An associative algebra of the simplest generalized functions,”Sib. Mat. Zh.,20, No. 4, 731–740 (1979).MATHGoogle Scholar
  95. 95.
    J. Jelínek, “Characterisation of the Colombeau product of distributions,”Comment. Math. Univ. Carolin.,27, No. 2, 377–394 (1986).MATHMathSciNetGoogle Scholar
  96. 96.
    J. Jelínek, “Distinguishing example for the Tillman product of distributions,”Comment. Math. Univ. Carolin.,31, No. 4, 693–700 (1990).MATHMathSciNetGoogle Scholar
  97. 97.
    E. Kadłubowska and R. Wawak, “Local order functions and regularity of the product of distributions,”Bull. Acad. Polon. Sci., Ser. Math.,32, No. 9, 523–533 (1984).Google Scholar
  98. 98.
    A. Kamiński, “On convolutions, products and Fourier transforms of distributions,”Bull. Acad. Polon. Sci., Ser Math.,25, No. 4, 369–374 (1977).Google Scholar
  99. 99.
    A. Kamiński, “On the product\(\tfrac{1}{{x^k }} \cdot \delta ^{(l - 1)} (x)\),”Bull. Acad. Polon. Sci., Ser. Math.,25, No. 4, 375–379 (1977).Google Scholar
  100. 100.
    A. Kamiński, “On the exchange formula,”Bull. Acad. Polon. Sci., Ser. Math.,26, No. 1, 19–24 (1978).Google Scholar
  101. 101.
    A. Kamiński, “Remarks on delta- and unit-sequences,”Bull. Acad. Polon. Sci., Ser. Math.,26, No. 1, 25–30 (1978).Google Scholar
  102. 102.
    A. Kamiński, “Convolution, product and Fourier transform of distributions,”Stud. Math.,74, No. 1, 83–96 (1982).Google Scholar
  103. 103.
    A. Kamiński, “On model delta-sequences and the product of distributions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 148–155.Google Scholar
  104. 104.
    K. Keller, “Irregular operations in quantum field theory. I. Multiplication of distributions,”Rep. Math. Phys.,14, No. 3, 285–309 (1978).MATHMathSciNetGoogle Scholar
  105. 105.
    A. V. Kim, “Generalized solutions of nonlinear differential equations,”Izv. Vuzov, Mat., No. 5, 58–63 (1987).MATHGoogle Scholar
  106. 106.
    C. O. Kiselman, “Sur la définition de l'opérateur de Monge-Ampère complexe,” In: Lecture Notes Math., Vol. 1094 (1984), pp. 139–150.Google Scholar
  107. 107.
    H. König, “Neue Begründung der Theorie der ‘Distributionen’ von L. Schwartz,”Math. Nachr.,9, 129–148 (1953).MATHMathSciNetGoogle Scholar
  108. 108.
    H. König, “Multiplikation von Distributionen. I,”Math. Ann.,128, 420–452 (1955).MATHMathSciNetGoogle Scholar
  109. 109.
    F. Lafon and M. Oberguggenberger, “Generalized solutions to symmetric hyperbolic systems with discontinuous coefficients: the multidimensional case,”J. Math. Anal. Appl.,160, No. 1 93–106 (1991).MathSciNetGoogle Scholar
  110. 110.
    M. Langlais, “Generalized functions solutions of monotone and semilinear parabolic equations,”Monatsh. Math.,110, No. 2, 117–136 (1990).MATHMathSciNetGoogle Scholar
  111. 111.
    J. Laurens, “Une modélisation numérique du dioptre acoustique liquide solide,”Colloque de Physique, Colloque C 2, supplément au t.51, No. 2, 1219–1222 (1990).Google Scholar
  112. 112.
    Ph. Le Floch, “Solutions faibles entropiques des systèmes hyperboliques non linéaires sous form non conservative,”C. R. Acad. Sci., Sér. I,306, No. 4, 181–186 (1988).MATHMathSciNetGoogle Scholar
  113. 113.
    Ph. Le Floch, “Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form,”Commun. Part. Diff. Equat.,13, No. 6, 669–727 (1988).MATHGoogle Scholar
  114. 114.
    Ph. Le Floch and T.-P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form,”Forum Math.,5, 261–280 (1993).MathSciNetGoogle Scholar
  115. 115.
    H. Lewy, “An example of a smooth linear partial differential equation without solution,”Ann. Math.,66, No. 1, 155–158 (1957).MathSciNetGoogle Scholar
  116. 116.
    Li Bang-He, “Nonstandard analysis and multiplication of distributions,”Sci. Sinica,21, No. 5, 561–585 (1978).MathSciNetGoogle Scholar
  117. 117.
    Li Bang-He, “On the Moire problem from the distributional point of view,”J. Sys. Sci. Math. Sci.,6, No. 4, 263–268 (1986).Google Scholar
  118. 118.
    Li Bang-He and Li Yaqing, “Nonstandard analysis and multiplication of distributions in any dimension,”Sci. Sinica (Ser. A),28, No. 7, 716–726 (1985).MathSciNetGoogle Scholar
  119. 119.
    Li Bang-He and Li Yaqing, “On the harmonic and analytic representations of distributions,”Sci. Sinica (Ser.A),28, No. 9, 923–937 (1985).MathSciNetGoogle Scholar
  120. 120.
    Li Bang-He and Li Yaqing, “New generalized functions in nonstandard framework,”Acta Math. Sci.,12, No. 3, 260–269 (1992).MathSciNetGoogle Scholar
  121. 121.
    J. Ligęza, “Generalized solutions of ordinary linear differential equations in the Colombeau algebra,”Math. Bohem.,118, No. 2, 123–146 (1993).MathSciNetGoogle Scholar
  122. 122.
    J. Ligęza, “Generalized solutions of boundary value problems for ordinary linear differential equations of second order in the Colombeau algebra,” In:Dissertationes Math. (Rozprawy Mat.). Pap. Conf. “Different Aspects of Differentiability,” 1993, Warsaw, Sept. 13–18, No. 340 (1995), pp. 183–194.Google Scholar
  123. 123.
    Li Yaqing, “What can a product of distribution zero and itself be?”Syst. Sci. Math. Sci.,3, No. 4, 381–383 (1990).Google Scholar
  124. 124.
    J. J. Lodder, “A simple model for a symmetrical theory of generalized functions. I: Definition of singular generalized functions. II: Operators on generalized functions,”Physica A,116, No. 1, 45–58. 59–73 (1982).MATHMathSciNetGoogle Scholar
  125. 125.
    J. J. Lodder, “A simple model for a symmetrical theory of generalized functions. III: Products of generalized functions. IV: Some extensions and conclusions. V: Some applications,”Physica A,116, No. 3, 380–391, 392–403, 404–410 (1982).MATHMathSciNetGoogle Scholar
  126. 126.
    S. Lojasiewicz, “Sur la valeur et la limite d'une distribution dans un point,”Stud. Math.,16, No. 1, 1–36 (1957).MATHMathSciNetGoogle Scholar
  127. 127.
    S. Lojasiewicz, “Sur la fixation des variables dans une distribution,”Stud. Math.,17, 1–64 (1958).MATHMathSciNetGoogle Scholar
  128. 128.
    G. Lysik, “On the regularity of the product of distributions,”Bull. Polish Acad. Sci. Math.,35, Nos. 3–4 203–210 (1987).MATHMathSciNetGoogle Scholar
  129. 129.
    B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution,”Ann. Inst. Fourier,6, 271–355 (1955).MathSciNetGoogle Scholar
  130. 130.
    A. Marzouk,Régularité de solutions généralisées d'équations différentielles algébriques, Thesis, Bordeaux (1989).Google Scholar
  131. 131.
    A. Marzouk and B. Perrot,Regularity results for generalized solutions of algebraic equations and algebraic differential equations, Preprint.Google Scholar
  132. 132.
    V. P. Maslov, “Three algebras corresponding to nonsmooth solutions of systems of quasilinear hyperbolic equations,”Usp. Mat. Nauk,35, No. 2, 252–253 (1980).Google Scholar
  133. 133.
    V. P. Maslov, “Nonstandard characteristics in asymptotic problems,”Usp. Mat. Nauk,38, No. 2, 3–36 (1983).MATHGoogle Scholar
  134. 134.
    V. P. Maslov and G. A. Omel'yanov, “Asymptotic soliton-form solutions of equations with small dispersion,”Usp. Mat. Nauk,36, No. 3, 63–126 (1981).MathSciNetGoogle Scholar
  135. 135.
    V. P. Maslov and V. A. Tsupin, “Necessary conditions for the existence of infinitesimally narrow solitons in gas dynamics,”Dokl. Akad. Nauk SSSR,246, No. 2, 298–300 (1979).MathSciNetGoogle Scholar
  136. 136.
    V. P. Maslov and V. A. Tsupin, “δ-Shaped Sobolev generalized solutions of quasilinear equations,”Usp. Mat. Nauk,34, No. 1, 235–236 (1979).MathSciNetGoogle Scholar
  137. 137.
    V. G. Maz/ya,S. L. Sobolev Spaces, Springer-Verlag, Springer Series in Soviet Mathematics (1985).Google Scholar
  138. 138.
    G. H. Meisters, “Linear operators commuting with translations on\(\mathcal{D}(\mathbb{R})\) are continuous,”Proc. Amer. Math. Soc.,106, No. 4, 1079–1083 (1989).MATHMathSciNetGoogle Scholar
  139. 139.
    J. Mikusiński, “Irregular operations on distributions,”Stud. Math.,20, No. 2, 163–169 (1961).Google Scholar
  140. 140.
    J. Mikusiński, “Criteria of the existence and the associativity of the product of distributions,”Stud. Math.,21, No. 3, 253–259 (1962).Google Scholar
  141. 141.
    J. Mikusiński, “On the square of the Dirac delta-distribution,”Bull. Acad. Polon. Sci., Sér. Math.,14, No. 9, 511–513 (1966).Google Scholar
  142. 142.
    M. Nedeljkov, “The Fourier transformation in some subspaces of Colombeau's generalized functions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 219–228.Google Scholar
  143. 143.
    M. Nedeljkov and S. Pilipović, “Convolution in Colombeau's spaces of generalized functions. Part I: The space\(\mathcal{G}_a \) and thea-integral. Part II: The convolution in\(\mathcal{G}_a \),”Publ. Inst. Math.,52, 95–104, 105–112 (1992).Google Scholar
  144. 144.
    M. Oberguggenberger, “Multiplication of distributions in the Colombeau algebra\(\mathcal{G}( \otimes )\),”Boll. Unione Mat. Ital. (6),5-A, No. 3, 423–429 (1986).MATHMathSciNetGoogle Scholar
  145. 145.
    M. Oberguggenberger, “Products of distributions,”J. Reine Angew. Math.,365, 1–11 (1986).MATHMathSciNetGoogle Scholar
  146. 146.
    M. Oberguggenberger, “Weak limits of solutions to semilinear hyperbolic systems,”Math. Ann.,274, No. 4, 599–607 (1986).MATHMathSciNetGoogle Scholar
  147. 147.
    M. Oberguggenberger, “Solutions généralisées de systèmes hyperboliques semilinéaires,”C. R. Acad. Sci., Sér. I,305, No. 1, 17–18 (1987).MATHMathSciNetGoogle Scholar
  148. 148.
    M. Oberguggenberger, “Generalized solutions to semilinear hyperbolic systems,”Monatsh. Math.,103, No. 2, 133–144 (1987).MATHMathSciNetGoogle Scholar
  149. 149.
    M. Oberguggenberger, “Hyperbolic systems with discontinuous coefficients: examples,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 257–266.Google Scholar
  150. 150.
    M. Oberguggenberger, “Products of distributions: nonstandard methods.Z. Anal. Anwendungen,7, No. 4, 347–365 (1988) Corrections to this article:Z. Anal. Anwendungen,10, 263–264 (1991).MATHMathSciNetGoogle Scholar
  151. 151.
    M. Oberguggenberger, “Systèmes hyperboliques à coefficients discontinus: solutions généralisées et une application à l'acoustique linéaire,”C. R. Math. Rep. Acad. Sci. Canada,10, No. 3, 143–148 (1988).MATHMathSciNetGoogle Scholar
  152. 152.
    M. Oberguggenberger, “Hyperbolic systems with discontinuous coefficients: generalized solutions and a transmission problem in acoustics,”J. Math. Anal. Appl.,142, No. 2, 452–467 (1989).MATHMathSciNetGoogle Scholar
  153. 153.
    M. Oberguggenberger, “Semilinear wave equations with rough initial data: generalized solutions,” In: P. Antosik and A. Kamiński (eds.),Generalized Functions and Convergence, World Scientific Publ., Singapore (1990), pp. 181–203.Google Scholar
  154. 154.
    M. Oberguggenberger, “The Carleman system with positive measures as initial data — generalized solutions,”Transp. Theory Statist. Phys.,20, Nos. 2 & 3, 177–197 (1991).MATHMathSciNetGoogle Scholar
  155. 155.
    M. Oberguggenberger, “Case study of a nonlinear, nonconservative, nonstrictly hyperbolic system,”Nonlinear Anal. Theory. Math. Appl,19, No. 1, 53–79 (1992).MATHMathSciNetGoogle Scholar
  156. 156.
    M. Oberguggenberger,Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes Math., Vol. 259, Longman, Harlow (1993).Google Scholar
  157. 157.
    M. Oberguggenberger, “Generalized functions and stochastic processes,” In:Proceedings of Conference on Stochastic Analysis, to appear.Google Scholar
  158. 158.
    M. Oberguggenberger and Y.-G. Wang, “Generalized solutions to conservation laws,”Z. Anal. Anwend.,13, No. 1, 7–18 (1994).MathSciNetGoogle Scholar
  159. 159.
    P. A. Panzone, “On the product of distributions,”Notas de Algebra y Analisis, Univ. Nacional del Sur, Bahia Blanca,16, i-vi, 1–73 (1990).MathSciNetGoogle Scholar
  160. 160.
    S. Pilipović, “Pseudo-differential operators and the microlocalization in the space of Colombeau's generalized functions,”Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur.,20, 13–27 (1995).Google Scholar
  161. 161.
    Ya. V. Radyno and Ngo Fu Tkhan', “Differential equations in an algebra of new generalized functions,”Dokl. Akad. Nauk Belarusi,37, No. 4 5–9 (1993).MathSciNetGoogle Scholar
  162. 162.
    Ya. V. Radyno, Ngo Fu Tkhan', and Sabra Ramadan, “Fourier transform in an algebra of new generalized functions,”Dokl. Ross. Akad. Nauk,327, No. 1, 20–24 (1992).Google Scholar
  163. 163.
    Ya. V. Radyno and Nguen Hoî Ngia, “The Cauchy problem in the space of generalized functions of J. Colombeau,”Dokl. Akad. Nauk Belarusi,34, No. 6, 489–492 (1990).Google Scholar
  164. 164.
    C. K. Raju, “Products and compositions with the Dirac delta function,”J. Phys. A: Math. Gen.,15, No. 2, 381–396 (1982).MATHMathSciNetGoogle Scholar
  165. 165.
    R. D. Richtmyer,Principles of Advanced Mathematical Physics, Vol. 1, Springer-Verlag, New York (1978).Google Scholar
  166. 166.
    J.-P. Rosay, “A very elementary proof of the Malgrange-Ehrenpreis theorem,”Amer. Math. Monthly,98, No. 6, 518–523 (1991).MATHMathSciNetGoogle Scholar
  167. 167.
    E. E. Rosinger,Distributions and Nonlinear Partial Differential Equations, Lecture Notes Math., Vol. 684 (1978).Google Scholar
  168. 168.
    E. E. Rosinger,Nonlinear Partial Differential Equations. Sequential and Weak Solutions, North-Holland Math. Studies, Vol. 44, Amsterdam (1980).Google Scholar
  169. 169.
    E. E. Rosinger,Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Math. Studies, Vol. 146, Amsterdam (1987).Google Scholar
  170. 170.
    E. E. Rosinger, “Global version of the Cauchy-Kovalevskaia theorem for nonlinear PDEs,”Acta Appl. Math.,21, No. 3, 331–343 (1990).MATHMathSciNetGoogle Scholar
  171. 171.
    E. E. Rosinger,Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions, North-Holland Math. Studies, Amsterdam (1992).Google Scholar
  172. 172.
    E. E. Rosinger, “Characterization for the solvability of nonlinear partial differential equations,”Trans. Amer. Math. Soc.,330, 203–225 (1992).MATHMathSciNetGoogle Scholar
  173. 173.
    L. A. Rubel, “Solutions of algebraic differential equations,”J. Diff. Equat.,49, No. 3, 441–452 (1983).MATHMathSciNetGoogle Scholar
  174. 174.
    L. A. Rubel, “Some research problems about algebraic differential equations,”Trans. Amer. Math. Soc.,280, No. 1, 43–52 (1983).MATHMathSciNetGoogle Scholar
  175. 175.
    L. A. Rubel, “Generalized solutions of algebraic differential equations,”J. Diff. Equat.,62, No. 2, 242–251 (1986).MATHMathSciNetGoogle Scholar
  176. 176.
    W. Rudin,Functional Analysis, McGraw-Hill, New York (1973).Google Scholar
  177. 177.
    P. Schapira, “Une équation aux dérivées partielles sans solutions dans l'espace des hyperfonctions,”C. R. Acad. Sci., Sér. A,265, No. 21, 665–667 (1967).MATHMathSciNetGoogle Scholar
  178. 178.
    L. Schwartz, “Sur l'impossibilité de la multiplication des distributions”C. R. Acad. Sci.,239, No. 15, 847–848 (1954).MATHGoogle Scholar
  179. 179.
    L. Schwartz,Théorie des Distributions, Nouvelle édition, Hermann, Paris (1973).Google Scholar
  180. 180.
    V. M. Shelkovich, “An algebra of distributions and generalized solutions of nonlinear equations,”Dokl. Ross. Akad. Nauk,342, No. 5, 600–602 (1995).MATHMathSciNetGoogle Scholar
  181. 181.
    R. Shiraishi, “On the value of a distribution at a point and multiplicative products,”J. Sci. Hiroshima Univ., Ser. A-I,31, No. 1, 89–104 (1967).MATHMathSciNetGoogle Scholar
  182. 182.
    R. Shiraishi and M. Itano, “On the multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,28, No. 2, 223–235 (1964).MathSciNetGoogle Scholar
  183. 183.
    J. Smoller,Shock Waves and Reaction-Diffusion Equatins, Grundlehren Math. Wissen., Vol. 258, Springer-Verlag, New York (1983).Google Scholar
  184. 184.
    S. L. Sobolev, “Methode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,”Mat. Sb.,1, No. 1, 39–72 (1936).MATHMathSciNetGoogle Scholar
  185. 185.
    S. L. Sobolev,Some Applications of Functional Analysis in the Mathematical Physics [in Russian], Nauka, Moscow (1988).Google Scholar
  186. 186.
    S. L. Sobolev,Selected Questions of the Theory of Functional Spaces and Generalized Functions [in Russian], Nauka, Moscow (1989).Google Scholar
  187. 187.
    K. D. Stroyan and W. A. J. Luxemburg,Introduction to the Theory of Infinitesimals, Pure Appl. Math. Vol.72, Academic Press, New York (1976).Google Scholar
  188. 188.
    A. Takaĉi, “New generalized functions ofK 1{M p} type,”Univ. Novom Sadu. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,23, No. 2, 129–140 (1993).Google Scholar
  189. 189.
    D. Takaĉi and A. Takaĉi, “An operational calculus in Colombeau's new generalized functions,”Bull. Appl. Math.,57, 153–161 (1991).Google Scholar
  190. 190.
    T. D. Todorov, “Asymptotic functions as kernels of the Schwartz distributions”Bulgar. J. Phys.,12, No. 5, 451–464 (1985).MATHMathSciNetGoogle Scholar
  191. 191.
    T. D. Todorov, “The products δ2(x),δ(x)×x n, θ(xx n, etc. in the class of the asymptotic functions,”Bulgar. J. Phys.,12, No. 5, 465–480 (1985).MATHMathSciNetGoogle Scholar
  192. 192.
    T. D. Todorov,Sequential approach to Colombeau's theory of generalized functions, ICTP, Trieste, Preprint IC/87/126 (1987).Google Scholar
  193. 193.
    T. D. Todorov, “Colombeau's generalized functions and non-standard analysis,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf. June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York, (1988), pp. 327–339.Google Scholar
  194. 194.
    T. D. Todorov, “A nonstandard delta function,”Proc. Amer. Math. Soc.,110, No. 4, 1143–1144 (1990).MATHMathSciNetGoogle Scholar
  195. 195.
    T. D. Todorov, “Pointwise kernels of Schwartz distribution,”Proc. Amer. Math. Soc.,114, No. 3, 817–819 (1992).MATHMathSciNetGoogle Scholar
  196. 196.
    T. D. Todorov, “An existence result for linear partial differential equations withC coefficients in an algebra of generalized functions,”Trans. Amer. Math. Soc.,348, No. 2, 673–689 (1996).MATHMathSciNetGoogle Scholar
  197. 197.
    J. Tysk, “Comparison of two methods of multiplying distributions,”Proc. Amer. Math. Soc.,93, No. 1, 35–39 (1985).MATHMathSciNetGoogle Scholar
  198. 198.
    V. Valmorin, “Fonctions généralisées périodiques et problème de Goursat,”C. R. Acad. Sci. Sér. I,320, No. 5, 537–540 (1995).MATHMathSciNetGoogle Scholar
  199. 199.
    V. Valmorin “A new algebra of periodic generalized functions,”Z. Anal. Anwend.,15, No. 1, 57–74 (1996).MATHMathSciNetGoogle Scholar
  200. 200.
    V. A. Vinokurov, “Changes of variables and multiplication of generalized functions,”Dokl. Akad. Nauk SSSR,319, No. 5, 1057–1064 (1991).MATHGoogle Scholar
  201. 201.
    V. S. Vladimirov,Generalized Functions in Mathematical Physics [in Russian], Mir, Moscow (1979).Google Scholar
  202. 202.
    P. Wagner, “On the multiplication and convolution of homogenous distributions,”Rev. Colombiana Mat.,24, Nos. 3–4 183–198 (1990).MATHMathSciNetGoogle Scholar
  203. 203.
    R. Wawak, “Some remarks about the product of distributions,”Bull. Acad. Polon. Sci., Ser. Math.,32, Nos. 3–4 179–183 (1984).MATHMathSciNetGoogle Scholar
  204. 204.
    R. Wawak, “Improper integrals of distributions,”Stud. Math.,86, No. 3, 205–220 (1987).MATHMathSciNetGoogle Scholar
  205. 205.
    R. Wawak, “On the Value of a distribution at a point,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 359–364.Google Scholar
  206. 206.
    R. Wawak, “On the Colombeau product of distributions,” In: P. Antosik and A. Kamiński (eds.),Generalized Functions and Convergence, World Scientific Publ., Singapore (1990).Google Scholar
  207. 207.
    Zhao Baoheng, “Solutions of the Schrödinger equation with δ-function potential and product of distributions,”J. China Univ. Sci. Tech.,23, No. 1, 27–30 (1993).MathSciNetGoogle Scholar
  208. 208.
    W. P. Ziemer,Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Vol. 120, Springer-Verlag, New York (1989).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. V. Chistyakov

There are no affiliations available

Personalised recommendations