Skip to main content
Log in

Justification of the asymptotic theory of thin rods. Integral and pointwise estimates

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We present a general (without any condition on symmetry) and simplified procedure of obtaining onedimensional equations describing strains of thin rods that can be anisotropic, nonhomogeneous and have periodic structure as well. The presented asymptotics is justified with the help of the weighted Korn inequality, i.e., the difference of the exact solution and an asymptotic solution to the problem of elasticity theory is estimated in the energetic integral metric. Uniform (by the maximum of modulus) estimates for the error of approximation of 3-dimensional displacement fields and stresses are also obtained. As is shown, it is impossible to obtain the pointwise closeness with respect to stresses if the influence of the boundary layer near the end-walls of the rod is not taken into account. Bibliography: 44 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. A. Ladyzhenskaya,Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. G. Fichera,Existence Theorems in Elasticity Theory [russian translation], Mir, Moscow (1972).

    Google Scholar 

  3. K. O. Friedrichs, “On the boundary value problems of the theory of elasticity and Korn's inequality,”Ann. Math., II Ser.,48, 441–471 (1947).

    MATH  MathSciNet  Google Scholar 

  4. J. Nečas,Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris (1967).

    Google Scholar 

  5. G. Duvaut and J. L. Lions,Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972).

    Google Scholar 

  6. V. A. Kondrat'ev and O. A. Oleįnik, “Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities,”Usp. Mat. Nauk,43, No. 5, 55–98 (1988).

    Google Scholar 

  7. A. R. Rzhanitsin,Mechanics for Building [in Russian], Vysshaya Shkola, Moscow (1982).

    Google Scholar 

  8. V. A. Svetlitskiį,Mechanics of Rods [in Russian], Vysshaya Shkola, Moscow (1987).

    Google Scholar 

  9. B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure,”J. Appl. Math. Mech.,37, 867–877, (1973).

    Article  MathSciNet  Google Scholar 

  10. P. G. Ciarlet and P. Destuynder, “A justification of the two-dimensional linear plate model,”J. Mecanique,18, 315–344 (1979).

    MathSciNet  Google Scholar 

  11. A. Bermúdez and J. M. Viaño, “Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques,”RAIRO Anal. Numér.,18, 347–376 (1984).

    Google Scholar 

  12. Z. Tutek and I. Aganovic, “A justification of the one-dimensional model of an elastic beam,”Math. Methods Appl. Sci.,8, No. 4, 502–515 (1986).

    MathSciNet  Google Scholar 

  13. H. Le Dret,Problémes Variationnels dans les Multi-domains, Modelisation des Jonctions et Applications, Masson, Paris (1991).

    Google Scholar 

  14. E. V. Galaktionov and E. A. Tropp, “Asymptotic method for computing thermo-elastic stress in a thin rod,”Izv. Akad. Nauk SSSR, Ser. Fiz.,40, No. 7, 1399–1406 (1976).

    Google Scholar 

  15. J. Sanchez-Hubert and E. Sanchez-Palencia, “Couplage flexion-torsion-traction dans les poutres anisotropes à section hétŕogene,”C. R. Acad. Sci. Paris, Sér. II,312, No. 4, 337–344, (1991).

    MathSciNet  Google Scholar 

  16. S. A. Nazarov, “Structure of the solutions of elliptic boundary-value problems in thin domains,”Vestn. Leningrad. Univ., Mat. Mekh. Astron., No. 7, Issue 2, 65–68 (1982).

    MATH  Google Scholar 

  17. M. V. Kozlova, “Averaging of a three-dimensional problem in elasticity theory for a thin nonhomogeneous beam,”Vestn. Mosk. Univ., Ser. I, Mat. Mekh., No. 5, 6–10 (1989).

    MATH  MathSciNet  Google Scholar 

  18. M. V. Kozlova and G. P. Panasenko “Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod,”Zh. Vychisl. Mat. Mat. Fiz.,31, No. 10, 1592–1596 (1991).

    MathSciNet  Google Scholar 

  19. G. P. Panasenko, “Asymptotic analysis of bar systems. I,”Russian J. Math. Phys.,2, No. 3, 325–353 (1994); II, ibid,4, No. 1, 87–116 (1996).

    MATH  MathSciNet  Google Scholar 

  20. S. N. Leora, S. A. Nazarov, and A. V. Proskura, “Derivation of limit functions for elliptic problems in thin domains using a computer,”Zh. Vychisl. Mat. Mat. Fiz.,26, No. 7, 1032–1048 (1986).

    MathSciNet  Google Scholar 

  21. S. A. Nazarov, “A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains,”Algebra Anal.,7, No. 5, 1–92 (1995).

    MATH  Google Scholar 

  22. W. G. Mazja, S. A. Nazarov, and B. A. Plamenewskii,Asymptotische Theorie elliptischez Randwertaufgaben in singulär gestörten Gebieten, Vol. 2, Akademie-Verlag, Berlin (1991).

    Google Scholar 

  23. G. P. Panasenko and M. V. Reztsov, “Averaging of a three-dimensional problem of elasticity theory in an inhomogenous plate,”Dokl. Akad. Nauk SSSR,294, No. 5, 1061–1065 (1987).

    MathSciNet  Google Scholar 

  24. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,”Commun. Pure Appl. Math.,17, No. 1, 35–92 (1964).

    MathSciNet  Google Scholar 

  25. V. A. Solonnikov, “General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. I,”Izv. Akad. Nauk SSSR, Ser. Mat.,28, 665–706 (1964); II,Tr. Mat. Inst. Steklova,92, 233–297, (1966).

    MATH  MathSciNet  Google Scholar 

  26. L. Bers, F. John, and M. Schechter,Partial Differential Equations, Wiley, New York-London-Sydney (1957).

    Google Scholar 

  27. S. A. Nazarov, “Korn inequalities that are asymptotically exact for thin domains,”Vestn. St. Petersburg Univ. Mat. Mekh. Astron., No. 2, 19–24 (1992).

    MATH  Google Scholar 

  28. S. A. Nazarov, “Korn's inequalities for junctions of spatial bodies and thin rods,”Math. Methods Appl. Sci.,20, No. 3, 219–243 (1997).

    MATH  MathSciNet  Google Scholar 

  29. D. Cioranescu, O. A. Oleinik, and G. Tronel, “Korn's inequalities for frame type structures and junctions with sharp estimates for the constants,”Asymptotic Anal.,8, 1–14 (1994).

    MathSciNet  Google Scholar 

  30. S. A. Nazarov and B. A. Plamenevsky,Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin (1994).

    Google Scholar 

  31. S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder,”Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 1, 101–112 (1981).

    MATH  MathSciNet  Google Scholar 

  32. V. G. Maz'ja and B. A. Plamenevskiį, “Estimates inL p and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary,”Math. Nachr.,81, 25–82 (1978).

    MathSciNet  Google Scholar 

  33. V. G. Maz'ja and B. A. Plamenevskiį, “Schauder estimates for solutions of elliptic boundary value problems in domains with edges on the boundary,”Tr. Sem. S. L. Soboleva, No. 2, 69–102 (1978).

    Google Scholar 

  34. V. G. Maz'ya and J. Rossmann, “On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains,”Ann. Global Anal. Geom. 9, No. 3, 253–303 (1991).

    MathSciNet  Google Scholar 

  35. S. A. Nazarov, “Self-adjoint elliptic boundary value problems. The polynomial property and formally positive operators,”Probl. Mat. Anal.,16, 167–192 (1997).

    MATH  Google Scholar 

  36. Ya. A. Roitberg,Elliptic Boundary Value Problems in the Spaces of Distributions, Kluwer, Dordrecht (1996).

    Google Scholar 

  37. O. A. Oleinik and G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity,”Arch. Rat. Mech. Anal.,78, No. 1, 29–53 (1982).

    MathSciNet  Google Scholar 

  38. V. A. Kondrat'ev, “Boundary value problems for elliptic equations in domains with conical or angular points,”Tr. Mosk. Mat. Obshch.,16, 209–298 (1967).

    MATH  Google Scholar 

  39. V. G. Maz'ja and B. A. Plamenevskiį, “The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points,”Math. Nachr.,76, 29–60 (1977).

    MathSciNet  Google Scholar 

  40. M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in extensions,”J. Appl. Mech.,19, No. 4, 526–528 (1952).

    Google Scholar 

  41. P. Grisvard, “Singularités en élasticité,”Arch. Rat. Mech. Anal.,107, No. 2, 157–180 (1989).

    MATH  MathSciNet  Google Scholar 

  42. M. Costabel and M. Dauge, “Computation of corner singularities in linear elasticity,”Lect. Notes Pure Appl. Math.,167, 59–68 (1995).

    MathSciNet  Google Scholar 

  43. V. A. Solonnikov, “Solvability of three-dimensional problems with a free boundary for a system of steadystate Navier-Stokes equations,”Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova,84, 252–285 (1979).

    MATH  MathSciNet  Google Scholar 

  44. V. G. Maz'ja, B. A. Plamenevskiį, and L. Stupjalis, “The three-dimensional problem of the steady-state motion of a fluid with a free surface,” in:Differentsial'nye Uravneniya i Primenen. [in Russian], No. 23, Vilnius (1979), pp. 9–153.

Download references

Authors

Additional information

Translated fromProblemy Matematicheskogo Analiza, No. 17, 1997, pp. 101–152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates. J Math Sci 97, 4245–4279 (1999). https://doi.org/10.1007/BF02365044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365044

Keywords

Navigation