Journal of Mathematical Sciences

, Volume 88, Issue 2, pp 244–248 | Cite as

An invariant of triangulated links from the quantum dilogarithm

  • R. M. Kashaev


An invariant of triangulated links in triangulated three-dimensional manifolds is constructed by means of the cyclic quantum dilogarithm. Apparently, it is an isotopic invariant of nonoriented links in an oriented closed three-dimensional manifold. Bibliography: 13 titles.


Manifold Quantum Dilogarithm Cyclic Quantum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Alexander,Ann. Math.,31, 294 (1930).MathSciNetGoogle Scholar
  2. 2.
    R. J. Baxter,Ann. Phys.,70, 193 (1972).MATHMathSciNetGoogle Scholar
  3. 3.
    R. J. Baxter,Exactly Solved Models in Statisfical Models, Academic Press, London (1982).Google Scholar
  4. 4.
    V. G. Drinfeld,Sov. Math. Dokl., 254 (1985).Google Scholar
  5. 5.
    J. L. Dupont and C. H. Sah,Commun. Math. Phys.,161, 265 (1994).CrossRefMathSciNetGoogle Scholar
  6. 6.
    L. D. Faddeev,Sov. Sci. Rev.,C1, 107 (1980).Google Scholar
  7. 7.
    L. D. Faddeev and R. M. Kashaev,Mod. Phys. Lett. A.,9, No. 5, 427 (1994).MathSciNetGoogle Scholar
  8. 8.
    V. F. R. Jones,Ann. Math.,126, 335 (1987).MATHGoogle Scholar
  9. 9.
    R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov,Int. J. Mod. Phys.,A8, 1399 (1993).MathSciNetGoogle Scholar
  10. 10.
    R. M. Kashaev, POMI Preprint,9 (1994).Google Scholar
  11. 11.
    L. J. Rogers,Proc. London Math. Soc.,4, 169 (1907).Google Scholar
  12. 12.
    V. Turaev and O. Viro,Topology,31, 865 (1992).CrossRefMathSciNetGoogle Scholar
  13. 13.
    C. N. Yang,Phys. Rev. Lett., 1312 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • R. M. Kashaev

There are no affiliations available

Personalised recommendations