Journal of Mathematical Sciences

, Volume 93, Issue 3, pp 417–420 | Cite as

Large deviations of degenerate Mises functionals

  • E. V. Ponikarov
Article
  • 10 Downloads

Abstract

Ya. Yu. Nikitin's method of obtaining asymptotics of large deviations is extended to a more general situation. Bibliography:14 titles.

Keywords

General Situation Mise Functional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. von Mises, “On the asymptotic distribution of differentiable statistical functions,”Ann. Math. Stat.,18, 309–348 (1947).MATHGoogle Scholar
  2. 2.
    V. S. Korolyuk and Yu. V. Borovskikh,Asymptotic Analysis of Distributions of Statistics [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  3. 3.
    M. Denker,Asymptotic Distribution Theory in Nonparametric Statistics, Vieweg, Braunschweig (1985).Google Scholar
  4. 4.
    T. Inglot, W. Kallenberg, and T. Ledwina, “Asymptotic behavior of some bilinear functionals of the empirical process,”Math. Methods Stat.,2, 316–336 (1993).MathSciNetGoogle Scholar
  5. 5.
    G. A. M. Jeurnink and W. C. M. Kallenberg, “Limiting values of large deviation probabilities of quadratic statistics,”J. Multivariate Anal.,35, 168–185 (1990).CrossRefMathSciNetGoogle Scholar
  6. 6.
    R. R. Bahadur,Some Limit Theorems in Statistics, SIAM, Philadelphia (1971).Google Scholar
  7. 7.
    Ya. Yu. Nikitin,Asymptotic Efficiency of Nonparametric Tests, Cambridge Univ. Press (1995).Google Scholar
  8. 8.
    R. Dasgupta, “On large deviation probabilities ofU-statistics in the non i.i.d. case,”Sankhya, Ser. A,46, 110–116 (1984).MATHMathSciNetGoogle Scholar
  9. 9.
    Ya. Yu. Nikitin, “Large deviations and asymptotic efficiency of integral-type statistics. I,”Zap. Nauchn. Semin. LOMI,85, 175–187 (1979).MATHMathSciNetGoogle Scholar
  10. 10.
    Ya. Yu. Nikitin, “Large deviations and asymptotic efficiency of integral-type statistics. II,”Zap. Nauchn. Semin. LOMI,97, 151–175 (1980).MATHMathSciNetGoogle Scholar
  11. 11.
    I. N. Sanov, “Probabilities of large deviations of random variables,”Mat. Sb.,42 (84), 11–44 (1957).MATHMathSciNetGoogle Scholar
  12. 12.
    P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, “Large deviation theorems for empirical probability measures,”Ann. Probab.,7, 553–586 (1979).MathSciNetGoogle Scholar
  13. 13.
    G. A. M. Jeurnink and W. C. M. Kallenberg, “Limiting exact efficiency of quadratic statistics,” Mem. No. 737, Univ. Trente (1992).Google Scholar
  14. 14.
    M. M. Vainberg and V. I. Trenogin,Ramification Theory for Solutions of Nonlinear Equations [in Russian], Nauka, Moscow (1969).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • E. V. Ponikarov

There are no affiliations available

Personalised recommendations