Skip to main content
Log in

Control of PaCO2 during mechanical ventilation: Monitoring and feedback techniques

  • Respiratory Assistance and Patient Monitoring
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

With the loss of respiratory function, mechanical ventilation is used to provide respiratory support. Ventilation is adjusted to provide homeostasis through the measurement and control of arterial PCO2. Ventilation monitoring techniques including off-line blood gas analysis, intramuscular electrodes, transcutaneous monitoring, and expired gas analysis provide the necessary data for the control of ventilation. In some clinical situations it may be advantageous to have the ventilation controlled automatically by a closed-loop system. These approaches have used end-tidal CO2 monitoring, metabolic measurements and intraarterial sensors. Feedback control has also been suggested for differential lung ventilation in the difficult to manage patient with unilateral pulmonary injury. Accurate alveolar gas sampling, drift of intraarterial sensors, and understanding of transcutaneous PCO2 measurements are areas where advances are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astrup, P., H. Getzche, and F. Neukirch. Laboratory investigations during treatment of patients with poliomyelitis and respiratory paralysis.Br. Med. 1:780–786, 1954.

    Google Scholar 

  2. Brantigan, J.W., V.L. Gott, M.L. Vestal, G.J. Fergusson, and W.H. Johnston. A non-thrombogenic diffusion membrane for continuous in-vivo measurement of blood gases by mass spectrometry.J. Appl. Physiol. 28:375–377, 1970.

    Google Scholar 

  3. Brantigan, J.W., V.L. Gott, and M.N. Martz. A teflon membrane for measurement of blood and intra-myocardial gas tensions by mass spectroscopy.J. Appl. Physiol. 32:276–282, 1972.

    CAS  PubMed  Google Scholar 

  4. Burton, G.W. The value of carbon dioxide monitoring during anesthesia.Anesthesia. 21:173, 1966.

    CAS  Google Scholar 

  5. Coon, R.L. N.C.J. Lai, and J.P. Kampine. Evaluation of a dual-function pH and PCO2 in-vivo sensor.J. Appl. Physiol. 40:1976:625–9.

    CAS  PubMed  Google Scholar 

  6. Coon, R.R., E.J. Zuperku, and J.P. Kampine. Systemic arterial blood pH servocontrol of mechanical ventilation.Anesthesiology. 49:201–204, 1978.

    CAS  PubMed  Google Scholar 

  7. Fast, T.D., D.R. Westenskow, N.L. Pace, and L.D. Nelson. Microcomputer based data acquisition and feedback control of differential lung ventilation.J. Crit. Care. 9:256, 1981.

    Google Scholar 

  8. Evans, J.M., M.I.J. Hogg, and M. Rosen. Correlation of alveolar PCO2 estimated by infrared analysis and arterial PCO2 in the human neonate and the rabbit.Br. J. Anaesth. 49:761–764, 1977.

    CAS  PubMed  Google Scholar 

  9. Frumin, M.J. Clinical use of a physiological respiratory producing N2O amnesia-analgesia.Anesthesiology. 18:290–299, 1957.

    CAS  PubMed  Google Scholar 

  10. Frumin, M.J., N.A. Bergman, and D.A. Holaday. Carbon dioxide and oxygen blood levels with a carbon dioxide controlled artificial respirator.Anesthesiology 20:313–320, 1959.

    CAS  PubMed  Google Scholar 

  11. Grevisse, P., H. Lecocq, and M. Demeester. A pulmonary model for the automatic control of a ventilator. Proceedings of the 6th Triennal World Congress, Aug. 1975, Boston-Cambridge, Massachusetts.

  12. Grodins, F.S. and S.M. Yamashiro. Control of Ventilation. ed. J.B. West.Bioengineering Aspects of the Lungs. Marcel Dekker Inc., New York, 1977, pp. 515–558.

    Google Scholar 

  13. Hansen, T.N. and W.H. Tooley. Skin surface carbon dioxide tension in sick infants.Pediatrics 64:942–945, 1979.

    CAS  PubMed  Google Scholar 

  14. Hilberman, M., J.P. Schill, and R.M. Peters. On-line digital analysis of respiratory mechanics and the automation of respiratory control.J. Thorac. Cardiovasc. Surg. 58:821–828, 1969.

    CAS  PubMed  Google Scholar 

  15. Hill, D.W. and C. Tilsley. A comparative study of the performance of five commercial blood gas and pH electrode analyzers.Br. J. Anaesthiol. 45:647–654, 1973.

    CAS  Google Scholar 

  16. Holloman, G.H., H.T. Milborn, and T.G. Coleman. A sampled data regulator for maintaining a constant alveolar CO2.J. Appl. Physiol. 25:463, 1968.

    Google Scholar 

  17. Lambertsen, C.J., M.G. Smith, S.J.G. Semple, and R. Gelfand. Respiratory effects in normal men of blood pH change at “constant” arterial and internal jugular venous pCO2.Fed Proc. Fed. Am. Soc. Exp. Biol. 17:92, 1958.

    Google Scholar 

  18. Ledingham, I.M., A.M. MacDonald, and I.H.S. Douglas. Monitoring of ventilation.Critical Care State of the Art Vol. 2. Fullerton, CA: The Society of Critical Care Medicine, 1981, p. II (E): 1–52.

    Google Scholar 

  19. Mitamura, Y., T. Mikami, H. Sugawara, and C. Yoshimoto. An optimally controlled respirator.IEEE Trans. Biomed. Eng. 18:330–337, 1971.

    CAS  PubMed  Google Scholar 

  20. Ohlson, K.B., D.R. Westenskow, and W.S. Jordan. Feedback control of ventilation using expired CO2.Anesthesiology 53:S387, 1980.

    Google Scholar 

  21. Parker, D., D. Delpy, and M. Lewis. Catheter tip electrode for continuous measurement of PO2 and PCO2.Med. Biol. Eng. Comput. 16:599–600, 1978.

    CAS  PubMed  Google Scholar 

  22. Pearce, D.H. A system for measurement of oxygen consumption and control of inspired carbon dioxide.IEEE Trans. Biomed. Eng. pp. 235–237, 1971.

  23. Radford, E.D., B.J. Ferris, and B.C. Kriete. Clinical use of a nomogram to estimate proper ventilation during artificial respiration.N. Engl. J. Med. 251:877–883, 1954.

    PubMed  Google Scholar 

  24. Schulz, V., H.V. Ulmer, W. Erdmann,et al. Ein verfahren zui paCO2-geregelten automatischen ventilation.Pneumonologie 150:319–325, 1974.

    Article  CAS  PubMed  Google Scholar 

  25. Severinghaus, J.W., M. Stafford and A.F. Bradley, TcPCO2 electrode design, calibration and temperature gradient problems.Acta Anaesthesiol. Scand. [Suppl.] 68:118–22, 1978.

    CAS  Google Scholar 

  26. Sugioka, K. Continuous measurement of PaCO2, pH and bicarbonate in humans undergoing anesthesia. (Abstract) 7th World Congress of Anaesthesiologists. Amsterdam, Netherlands.Excerpta Med. Int. Congr. Ser. 1980, p. 262.

  27. Tremper, K.K., R.A. Mentelos, and W.S. Shoemaker. Effect of hypercarbia and shock on transcutaneous carbon dioxide at different electrode temperatures.Crit. Care Med. 8:608–612, 1980.

    CAS  PubMed  Google Scholar 

  28. Westenskow, D.R., N.L. Pace, and D.E. East. Differential lung ventilation following unilateral hydrocloric acid aspiration in the dog.J. Crit. Care 9:256, 1981.

    Google Scholar 

  29. Whitehead, M.D., M.J. Pollitzer, D. Parker, D. Halsall, D.T. Delphy, and E.O.R. Reynolds. Transcutaneous estimation of arterial PO2 and PCO2 in newborn infants with a single electrochemical sensor.Lancet 1:1111–1114. 1980.

    CAS  Google Scholar 

  30. Whittenberger, J.L. and S.J. Sarnoff. Symposium on specific methods of treatment: physiologic principles in treatment of respiratory failure.Med. Clin. North Am. 34:1335–1362, 1950.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westenskow, D.R. Control of PaCO2 during mechanical ventilation: Monitoring and feedback techniques. Ann Biomed Eng 9, 659–667 (1981). https://doi.org/10.1007/BF02364778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364778

Keywords

Navigation