Skip to main content
Log in

Acoustic determinants of respiratory system properties

  • Respiratory Mechanics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical and geometrical properties of the upper and central airways between the mouth and the carina can be inferred noninvasively in individual subjects from high frequency acoustic reflection data measured at the mouth. Idealizations implicit in the theoretical inverse-scattering formalism used to infer this information lead to a variety of limitations in data acquisition, and several forms of errors. In particular, airway wall dynamics, propagation of higher order modes, and limited measurement bandwidth combine to limit spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson, S.V. and E. Eliot. Wavespeed limitation of expiratory flow—A unifying concept.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43:498–515, 1977.

    CAS  Google Scholar 

  2. DuBois, A.B., A.W. Brody, D.H. Lewis, B.F. Burgess, Oscillation mechanics of the lungs and chest in man.J. Appl. Physiol. 8:587–594, 1956.

    CAS  PubMed  Google Scholar 

  3. Fredberg, J.J. and J.A. Moore. Distributed response of complex branching duct networks,J. Acoust. Soc. Am. 63(3):954–961, 1978.

    CAS  PubMed  Google Scholar 

  4. Fredberg, J.J., M.E. Wohl, G.M. Glass, and H.L. Dorkin. Airway are by acoustic reflections measured at the mouth.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 48(5):749–758, 1980.

    CAS  Google Scholar 

  5. Hoffstein, V., G.M. Glass, M.E. Wohl, H.L. Dorkin, D. Strieder, and J.J. Fredberg. Tracheal geometry and compliance during breathing.Physiologist (Abstract) 23(4):165, 1980.

    Google Scholar 

  6. Hyatt, R.E., T.A. Wilson, E. Bar-Yishay. Prediction of maximal expiratory flow in excised human lungs.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 48(6):991–998, 1980.

    CAS  Google Scholar 

  7. Jackson, A.C., J.P. Butler, F.J. Millet, F.G. Hoppin, S.V. Dawson. Airway geometry by analysis of acoustic pulse response measurements.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43:523–536, 1977.

    CAS  Google Scholar 

  8. Laennec, R.T.H.De L'Auscultation Mediate, 1st Paris Edition. Brosson and Chaude, 1819.

  9. Mazzei, W., R. Castile, J.J. Fredberg, M.E. Wohl, G.M. Glass, and L. Brooks. Correlation of maximal expiratory flow and airway area.Physiologist (Abstract). 24:83, 1981.

    Google Scholar 

  10. Sidell, R.S. and J.J. Fredberg. Non-invasive inference of airway network geometry from broadband lung reflected data.J. Biomech. Eng. 100:131–138, 1978.

    Google Scholar 

  11. van den Berg, J.W. An electrical analogue of the trachea, lungs, and tissues.Acta Physiol. Pharmacol. Neerl. 9:361–385, 1960.

    Google Scholar 

  12. Ware, J.A. and K. Aki. Continuous and discrete inverse scattering problems in a stratified elastic medium. I. Plane waves at normal incidence.J. Acoust. Soc. Am. 54:911–921, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by NHLBI grant HL-26800.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredberg, J.J. Acoustic determinants of respiratory system properties. Ann Biomed Eng 9, 463–473 (1981). https://doi.org/10.1007/BF02364764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364764

Keywords

Navigation