Skip to main content
Log in

Decomposition of models of control processes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. A. Agladze and Yu. N. Ponomarev, “Group approach to analysis of dynamic controllable system,”Kibernetika (Kiev), No. 25, 8–11 (1984).

    MathSciNet  Google Scholar 

  2. Yu. N. Andreev, “Differential geometric methods in control theory,”Avtomat. Telemekh., No. 10, 5–46 (1982).

    MATH  Google Scholar 

  3. T. G. Alavidze, “Point factorization of systems of evolution equations,” In:Simulation and Optimization of Complex Dynamic Processes [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1989), pp. 22–30.

    Google Scholar 

  4. T. G. Alavidze,Factorization of Distributed Evolutionary Control Systems [in Russian], Ph.D. Thesis, Bauman Physical Engineering Institute, Moscow (1990).

    Google Scholar 

  5. M. A. Arbib and E. G. Manes, “Foundations of system theory: decomposable systems,” In:Mathematical Methods in System Theory [Russian translation], Mir, Moscow (1979), pp. 7–48.

    Google Scholar 

  6. V. I. Arnold,Ordinary Differential Equations [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  7. V. N. Afanac'ev, V. B. Kolmanovskii, and V. R. Nosov,Mathematical Theory of Control System Design [in Russian], Vysshaya Skola, Moscow (1989).

    Google Scholar 

  8. D. V. Beklemishev,A Course in Analytical Geometry and Linear Algebra [in Russian], 5th ed., Nauka, Moscow (1984).

    Google Scholar 

  9. V. E. Belozerov and G. V. Mozhaev, “On the minimal possible number of equations in a linear stationary system,”Differents. Urav.,17, No. 4, 589–597 (1981).

    MathSciNet  Google Scholar 

  10. V. E. Berbuick, “Application of first integrals in the synthesis of optimal control systems,”Prikl. Mat. Mekh.,50, No. 1, 17–23 (1986).

    MathSciNet  Google Scholar 

  11. N. A. Bogatyreva and E. S. Pyatnitskii, “Minimax principle of mechanics and its application to optimal control problems,”Kibern. Vychisl. Tekh. (Kiev), No. 55, 71–78 (1988).

    Google Scholar 

  12. A. A. Bogoyavlenskii, I. S. Emel'yanova, L. M. Markhashov, Yu. N. Pavlovskii, and G. N. Yakovenko, “The methods of the group theory of continuous transformations in the mechanics of systems with a finite number of degrees of freedom,” In:Stability of Motion, Analytical Mechanics, and Motion Control [in Russian], Nauka, Moscow (1981), pp. 69–93.

    Google Scholar 

  13. I. F. Boretskii and V. G. Pavlov, “On certain properties of dynamics systems related to their symmetry,”Kibern. Vychisl. Tekh. (Kiev), No. 47, 25–34 (1980).

    MathSciNet  Google Scholar 

  14. V. G. Borisov, S. N. Dilingenskii, and A. Yu. Efremov, “Synthesis of invariant control systems,”Avtomat. Telemekh., No. 7, 3–16 (1990).

    Google Scholar 

  15. I. A. Borovikov,Selection of Decomposition Structure for Optimal Processes [in Russian], Ph.D. Thesis, Bauman Physical Engineering Institute, Moscow (1990).

    Google Scholar 

  16. I. A. Borovikov, “Approximate factorization in linearly quadratic optimal control,” In: Mathematical Methods of Data Processing and Control [in Russian], Bauman Physical Engineering Institute, Moscow (1988), pp. 88–93.

    Google Scholar 

  17. I. A. Borovikov, “On an application of almost nonlinear controllability,” In:Simulation of Control Processes and Data Processing [in Russian], Bauman Physical Engineering Institute, Moscow (1989), pp. 52–57.

    Google Scholar 

  18. I. A. Borovikov, “Factorization in a class of optimal processes,” In:Simulation of Control Processes and Data Processing [in Russian], Bauman Physical Engineering Institute, Moscow (1987), pp. 121–126.

    Google Scholar 

  19. I. Bucur and A. Delenau,Introduction to the Theory of Categories and Functors [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  20. N. Bourbaki,Set Theory [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  21. N. Bourbaki,Differentiable and Analytical Manifolds [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  22. N. Bourbaki,Groups and Lie Algebras [Russian translation], Mir, Moscow (1976).

    Google Scholar 

  23. V. V. Velichenko, “On the problem of invariancy of dynamic systems,”Dokl. Akad. Nauk SSSR,184, No. 2, 263–266 (1969).

    MathSciNet  Google Scholar 

  24. V. V. Velichenko, “On the invariant approach in the problem of invariancy of control systems,”Avtomat. Telemekh., No. 4, 22–35 (1972).

    MathSciNet  Google Scholar 

  25. V. P. Vizgin,Development of Interrelation principles of Invariancy and Conservation Laws in Classical Physics [Russian translation], Nauka, Moscow (1972).

    Google Scholar 

  26. V. E. Vishnevskii, “Pade approximation of Lie transformations of nonlinear rapid action problems,”Avtomatika (Kiev), No. 6, 23–31 (1989).

    MATH  MathSciNet  Google Scholar 

  27. A. A. Voronov,Stability, Controllability, Observability [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  28. R. Gabasov and F. M. Kirillova,Singular Optimal Controls [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  29. F. R. Gantmakher,Lectures on Analytical Mechanics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  30. K. G. Garaev, “Theory of invariant variational problems in optimization of dynamic systems with control,”Avtomat. Telemekh., No. 9, 49–56 (1992).

    MATH  MathSciNet  Google Scholar 

  31. R. Goldblatt,Category Analysis of Logic [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  32. M. Davis,Nonstandard Analysis [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  33. V. A. Dubrovin, C. P. Novikov, and A. T. Fomenko,Modern Geometry: Methods and Applications [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  34. V. I. Elkin, “On the conditions for aggregation of dynamic control processes,”Zh. Vychisl. Mat. Mat. Fiz.,18, No. 4, 928–934 (1978).

    MATH  MathSciNet  Google Scholar 

  35. V. I. Elkin, “Invariancy of control systems,”Proc. XX111 Sci. Conf. (1977),Ser. Aerofiz. Prikl. Mat., Bauman Physical Engineering Institute, Moscow (1978), pp. 155–157.

    Google Scholar 

  36. V. I. Elkin, “Algebraic approach to the theory of invariancy of control systems,” In:Complex Control Systems [in Russian], Kiev (1979), pp. 21–32.

  37. V. I. Elkin, “Realization, invariancy, and autonomy of nonlinear control systems,”Avtomat. Telemekh., No. 7, 36–44 (1981).

    MATH  MathSciNet  Google Scholar 

  38. V. I. Elkin, “Synthesis of perturbation-invariant nonlinear dynamic control systems,”Kibern. Vychisl. Tekh. (Kiev),51, 11–17 (1981).

    MATH  MathSciNet  Google Scholar 

  39. V. I. Elkin,Algebraic and Geometric Methods in Control Theory. Vector Fields and Diffeomorphism Groups [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1982).

    Google Scholar 

  40. V. I. Elkin,Algebraic and Geometric Methods in Control Theory. Dynamic Control Systems [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1984).

    Google Scholar 

  41. V. I. Elkin, “On the classification and canonical forms of nonlinear control systems,”Avtomat. Telemekh., No. 9, 31–41 (1985).

    MATH  MathSciNet  Google Scholar 

  42. V. I. Elkin, “On the decomposition of linear control systems,” In:Decomposition and Optimization of Complex Systems [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1988), pp. 66–75.

    Google Scholar 

  43. V. I. Elkin, “Subsystems of affine control systems,” In:Modeling and Optimization of Complex Dynamic Processes [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1989), pp. 3–10.

    Google Scholar 

  44. V. I. Elkin, “General solution of partial differential equations with identical principal part,”Differents. Uravn.,XXI, No. 8, 1389–1398 (1985).

    MathSciNet  Google Scholar 

  45. V. I. Elkin, Yu. N. Pavlovski, A. N. Chernoplekov, and G. N. yakovenko, “Factorization of dynamic control systems and its application,”Proc. Int. Symp. [in Russian], Novosibirsk (1978), pp. 108–117.

  46. V. I. Elkin, “Restriction of affine control systems and its application,”Dokl. Akad. Nauk,339, No. 6, 754–756 (1994).

    MATH  MathSciNet  Google Scholar 

  47. S. V. Emel'yanov, P. V. Zhiboglyadov, S. K. Korovin, and S. V. Nikitin, “Semigroup approach to describing admissible perturbations,”Dokl. Akad. Nauk,312, No. 5, 1057–1061 (1990).

    Google Scholar 

  48. S. V. Emel'yanov, S. K. Korovin, and S. V. Nikitin, Institute of System Research, Dep. No. 186-B91, VINITI, Moscow (1991).

  49. V. F. Zhuravlev and D. M. Klimov,Applied Methods in Oscillation Theory [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  50. A. K. Zvonkin and M. A. Shubin, “Nonstandard analysis and singular perturbations of differential equations,”Usp. Mat. Nauk,39, No. 2, 57–76 (1984).

    MathSciNet  Google Scholar 

  51. N. Kh. Ibragimov,Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  52. N. Kh. Ibragimov,Elements of Group Analysis (Advances in Science and Technology), Series on Mathematics and Cybernetics [in Russian], No. 8, Znanie, Moscow (1989).

    Google Scholar 

  53. N. Kh. Ibragimov,Experiments in Group Analysis of Ordinary Differential Equations. Series on Mathematics and Cybernetics [in Russian], No. 7, Znanie, Moscow (1991).

    Google Scholar 

  54. N. Kh. Ibragimov, “Group analysis of ordinary differential equations and the invariancy principle in mathematical physics,”Usp. Mat. Nauk,47, No. 4 (286), 83–144 (1992).

    MATH  Google Scholar 

  55. N. Kh. Ibragimov, “Vessio-Gouldber-Lie algebra and its application in integrating nonlinear equations,” In:modern Group Analysis [in Russian], Bauman Physical Engineering Institute, Moscow (1993), pp. 23–28.

    Google Scholar 

  56. R. R. Ivankov and N. M. Ivanov, “Group theoretic method of interpreting dimension in optimal control panels,”Avtomat. Telemekh., No. 8, 183–184 (1990).

    MathSciNet  Google Scholar 

  57. I. V. Ionova and T. G. Smirnova,Certain Approximate Aggregation Problems [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1987).

    Google Scholar 

  58. I. V. Ionova, “Methods of approximate aggregation of nonlinear models with linear aggregates,” In:Decomposition and Optimization of Complex Systems [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1988), pp. 76–88.

    Google Scholar 

  59. I. V. Ionova, “Approximate aggregation of one class of mathematical models,” In:Modeling and Optimization of Complex Dynamic Processes [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1989), pp. 11–22.

    Google Scholar 

  60. A. Yu. Ishlinskii, “Opening address to conference,”Annals of the All-Union Council Theor. Invariance [in Russian], Ukrainian Academy of Sciences, Kiev (1959), pp. 5–9.

    Google Scholar 

  61. E. Kamke,Handbook on Ordinary Differential Equations [Russian translation], Nauka, Moscow (1961).

    Google Scholar 

  62. E. Kamke,Handbook on First-Order Partial Differential Equations [Russian translation], Nauka, Moscow (1966).

    Google Scholar 

  63. P. Kart'e, “Singular perturbations of differential equations and nonstandard analysis,”Usp. Mat. Nauk,39, No. 2, 57–76 (1984).

    MathSciNet  Google Scholar 

  64. A. A. Kirillov,Elements of Representation Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  65. A. P. Krishchenko, “Synthesis of terminal control algorithms for nonlinear systems,”Izv. Akad. Nauk. Tekh. Kibern., No. 1, 48–57 (1994).

    MATH  Google Scholar 

  66. A. P. Krishchenko, “Approximation of the output of a multidimensional affine system in the singular case,”Differents. Uravn.,29, No. 11, 1921–1927 (1993).

    MATH  MathSciNet  Google Scholar 

  67. R. Courant,Partial Differential Equations [Russian translation], IL, Moscow (1964).

    Google Scholar 

  68. A. B. Kurzhanskii,Control and Observation under Uncertainty Conditions [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  69. S. A. Kutepov and G. N. Yakovenko, “On the reachable set structure (abstracts),”Mckh. Tverd. Tela, No. 6, 165 (1981).

    Google Scholar 

  70. S. A. Kutepov and G. N. Yakovenko, “Group theoretic aspects of optimal control,”Kibern. Vychisl. Tekh. (Kiev), No. 58, 28–35 (1983).

    MathSciNet  Google Scholar 

  71. A. I. Kukhtenko,Invariance Problems in Automation [in Russian], Tekhnika, Kiev (1963).

    Google Scholar 

  72. A. I. Kukhtenko, “Algebraic invariant theory in automatic control problems,”Kibern. Vychisl. Tekh. (Kiev), No. 39, 3–16 (1978).

    MathSciNet  Google Scholar 

  73. L. B. Lee and L. Markus,Elements of Optimal Control Theory [Russian translation], Nauka, Moscow (1972).

    Google Scholar 

  74. K. Lobri, “Dynamic systems and control theory,” In:Mathematical Methods in System Theory [Russian translation], Mir, Moscow (1979), pp. 134–173.

    Google Scholar 

  75. L. Ljung,Identification of Systems [Russian translation], Nauka, Moscow (1991).

    Google Scholar 

  76. B. M. Menskii,Invariance Principle in Automatic Regulation [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  77. G. V. Mozhaev, “On the use of symmetry in linear optimal control problems with quadratic quality criterion,”Avtomat. Telemekh., No. 7, 23–31 (1975).

    MATH  MathSciNet  Google Scholar 

  78. V. E. Nabivach, “Decomposition techniques for studying multidimensional linear dynamic systems with singularities of low codimension,”Abstr. All-Union Conf. Decomposition and Coordination in Complex Systems [in Russian], Chelyabinsk (1986), Part I, pp. 26–27.

  79. L. V. Ovsyannikov,Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  80. P. Oliver,Application of Lie Groups to Differential Equations [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  81. N. I. Osetinskii and R. G. Faradzhev, “Absolute invariance and classification of linear stationary dynamic systems,”Kibern. Vychisl. Tekh. (Kiev), No. 85, 23–25 (1990).

    MathSciNet  Google Scholar 

  82. N. I. Osetinskii, “Review of certain results on modern linear system theory,” In:Mathematical Methods in System Theory [in Russian], Mir, Moscow (1979), pp. 271–327.

    Google Scholar 

  83. N. I. Osetinskii, “Review of certain results and methods of modern linear system theory,” In:System Theory: Mathematical Methods and Simulation [in Russian], Mir, Moscow (1989), pp. 328–379.

    Google Scholar 

  84. V. G. Pavlov, “Invariant systems of transformation groups,”Kibern. Vychisl. Tekh. (Kiev), No. 58, 17–22 (1983).

    MATH  Google Scholar 

  85. Yu. N. Pavlovskii, “Group properties of dynamic control systems and phase organization structures,”Zh. Vychisl. Mat. Mat. Fiz.,14, No. 4, 862–872 (1974); No. 5, 1093–1193 (1974).

    MATH  MathSciNet  Google Scholar 

  86. Yu. N. Pavlovskii, “Aggregation, decomposition, group properties, and decomposition structures of dynamic systems,”Kibern. Vychisl. Tekh. (Kiev), No. 39, 53–63 (1978).

    MathSciNet  Google Scholar 

  87. Yu. N. Pavlovskii, “Factorization and decomposition methods in system theory,” In:Kibern. Vychisl. Tekh. (Kiev), No. 54, 9–15 (1978).

  88. Yu. N. Pavlovskii, “Control of decomposition structures,” In:Kibern. Vychisl. Tekh. (Kiev), No. 58, 11–16 (1983).

  89. Yu. N. Pavlovskii, “On the aggregation problem,” In:Theory and Practice of Applying Aggregation Methods in Planning and Management [in Russian], Izd. Armenian Academy of Sciences, Erevan (1983), pp. 6–11.

    Google Scholar 

  90. Yu. N. Pavlovskii, “Theory of factorization and decomposition of dynamic control systems,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 4, 45–57 (1984).

    MathSciNet  Google Scholar 

  91. Yu. N. Pavlovskii,Decomposition of Models of Control Systems [in Russian], Znanie, Moscow (1985).

    Google Scholar 

  92. Yu. N. Pavlovskii, “Approximate decomposition of models of controllable processes,” In:Mathematical Modeling: Processes in Complex Economic and Ecological Systems [in Russian],-Nauka, Moscow (1986), pp. 265–280.

    Google Scholar 

  93. Yu. N. Pavlovskii, “On the duality in decomposition theory,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 3–13 (1990).

    MATH  Google Scholar 

  94. Yu. N. Pavlovskii, “Decomposition problem in mathematical simulation,”Mat. Modelir.,3, No. 4, 93–122 (1991).

    MathSciNet  Google Scholar 

  95. Yu. N. Pavlovskii, “Decomposition endowed with set structure on the free sum and Cartesian product,”Dokl. Akad. Nauk SSSR,130, No. 3, 314–316 (1978).

    MathSciNet  Google Scholar 

  96. Yu. N. Pavlovskii, “On the map propagation theory,” In:Simulation, Optimization, and Decomposition of Complex Dynamic Processes [in Russian], Computing Center, Russian Academy of Sciences, Moscow (1995), pp. 3–9.

    Google Scholar 

  97. Yu. N. Pavlovskii, “Decomposition of sigma-objects in HPF-categories,” In:Inter-Departmental Scientific Papers [in Russian], Bauman Physical Engineering Institute, Moscow (1995).

    Google Scholar 

  98. Yu. N. Pavlovskii and G. N. Yakovenko, “Groups admitted by dynamic systems,” In:Optimization Methods and Their Applications [in Russian], Nauka, Novosibirsk (1982), pp. 155–189.

    Google Scholar 

  99. B. V. Pel'tsverger, “Approximate decomposition and interaction in complex technical systems,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, pp. 83–94 (1990).

    MATH  Google Scholar 

  100. B. N. Petrov, “Invariance principle and its application in computing linear and nonlinear systems,” In:Tr. I Mezhnard. Symp. Avtom. Uprov. [in Russian], Nauka, Moscow (1961), pp. 259–271.

    Google Scholar 

  101. M. A. Pinskii, “On the equivalence of control systems with continuous group symmetry,”Differents. Uravn.,187, No. 6, 1089–1091 (1982).

    MathSciNet  Google Scholar 

  102. M. A. Pinskii, “On the group equivalence criterion of dynamic control systems,” In:An Investigation into Multiconnected Systems [in Russian], Moscow (1982), pp. 55–60.

  103. L. S. Pontryagin,Continuous Groups [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  104. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and M. F. Mishchenko,Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961).

    Google Scholar 

  105. E. S. Pyatnitskii, “Control synthesis by robot via the decomposition principle,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 3, 25–33 (1987).

    MATH  MathSciNet  Google Scholar 

  106. E. S. Pyatnitskii, “Decomposition principle in mechanical control systems,”Dokl. Akad. Nauk SSSR,300, No. 2, 25–33 (1988).

    Google Scholar 

  107. E. N. Rosenvasser and R. M. Yusupov,Sensitivity of Control Systems [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  108. L. I. Rozonoer, “Variational approach to the problem of invariancy of automatic control systems,”Avtomat. Telemekh., No. 6, 744–755 (1963); N 7, 861–870 (1963).

    MathSciNet  Google Scholar 

  109. T. G. Smirnova, “On partial aggregation and partially admissible groups,”Kibern. Vychisl. Tekh. (Kiev), No. 54, 31–35 (1982).

    Google Scholar 

  110. T. G. Smirnova, “On the approximate solution of an aggregation problem,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 25–30 (1984).

    MathSciNet  Google Scholar 

  111. T. G. Smirnova,Approximate Decomposition of Dynamic Systems [in Russian], Computing Center, USSR Academy of Sciences, Moscow (1987).

    Google Scholar 

  112. V. I. Sokolov, “Synthesis of decomposing control in nonlinear dynamic systems,”Differents. Uravn.,24, No. 4, 600–613 (1988).

    MATH  Google Scholar 

  113. E. M. Solnechnii, “Investigation into the syntehsis of an invariant control system by a synchronous electric generator,”Avtomat. Telemekh., No. 2, No. 2, 62–75 (1991).

    Google Scholar 

  114. V. S. Tanaev,Decomposition and Aggregation in Mathematical Programming Problems [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  115. V. V. Udilov, “Group theoretic approach to problems of autonomy, invariancy, and sensitivity in dynamic control systems,”Kibern. Vychisl. Tekh. (Kiev), No. 39, 72–83 (1978).

    MathSciNet  Google Scholar 

  116. V. V. Udilov, “Method of invariant manifolds in problems of dynamic control systems,”Kibern. Vychisl. Tekh. (Kiev), No. 47, 10–25 (1980).

    MATH  MathSciNet  Google Scholar 

  117. K. Faith,Algebra: Rings, Modules, and Categories. Part I [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  118. A. A. Flerov, “Techniques of invariant synthesis,” In:Proc. 27th Conf. Aerophys. Appl. Math. [in Russian], Bauman Physical Engineering Institute, Moscow (1981), pp. 118–120.

    Google Scholar 

  119. A. A. Flerov, “Invariant synthesis problem and its applications,” In:Kibern. Vychisl. Tekh. (Kiev), No. 58, 52–56 (1983).

  120. M. M. Khrustalev, “Necessary and sufficient conditions for weak invariancy,”Avtomat. Telemekh., No. 4, 17–22 (1968).

    MATH  MathSciNet  Google Scholar 

  121. M. M. Khrustalev, Yu. P. Plotnikov, and V. A. Belov, “Application of invariance theory to reentry control problems,”Proc. Sixth Int. Symp. IFAS Automat. Cont. Space [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  122. M. M. Khrustalev and V. V. Dement'eva, “A simple disturbance-invariant reentry algorithm,” In:Integration of Active Control Systems for Flying Vehicles. Application of Adaptation and Identification Methods. [in Russian], Moscow (1982), pp. 76–82.

  123. V. I. Tsurkov,Decomposition in High-Dimension Problems [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  124. V. I. Tsurkov,High-Dimension Dynamic Problems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  125. A. N. Chenoplekov, “Dynamic groups in the category of dynamic systems,”Proc. MFTI, Aerodynamics and Applied Mathematics [in Russian], Bauman Physical Engineering Institute, Moscow (1979), pp. 197–200.

    Google Scholar 

  126. A. N. Chenoplekov, “Dynamic groups and Lagrange systems,”Proc. MFTI, Aerodynamics and Applied Mathematics [in Russian], Bauman Physical Engineering Institute, Moscow (1979), pp. 150–152.

    Google Scholar 

  127. A. N. Chernoplekov, “Algebraic aspects of factorization of dynamic systems,”Kibern. Vychisl. Tekh. (Kiev), No. 51, 29–36 (1981).

    MATH  MathSciNet  Google Scholar 

  128. A. N. Chernoplekov, “Factorization of variational systems,”Kibern. Vychisl. Tekh. (Kiev), No. 55, 45–51 (1982).

    MathSciNet  Google Scholar 

  129. F. L. Chernous'ko, “Decomposition and control synthesis in dynamic systems,”Izv. Akad. Nauk SSSR. Tekh. Kibern., No. 6, 64–82 (1990).

    MATH  Google Scholar 

  130. F. L. Chernous'ko,Estimation of the Phase State of Dynamic Systems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  131. Yu. B. Shtessel and A. Yu. Evnin, “Invariant control for the output of nonlinear systems,”Avtomat. Telemekh., No. 3, 46–52 (1990).

    MathSciNet  Google Scholar 

  132. G. B. Shchipanov, “Theory and design of automatic regulators,”Avtomat. Telemekh., No. 1, 49–66 (1939).

    Google Scholar 

  133. L. P. Eisenhart,continuous Transformation Groups [Russian translation], IL, Moscow (1947).

    Google Scholar 

  134. G. N. Yakovenko,L-Systems: Their Investigation [in Russian], Ph.D. Thesis, Moscow (1973).

  135. G. N. Yakovenko, “Necessary condition for controllability,” In:Questions of Applied Mathematics [in Russian], Irkutsk (1975), pp. 108–119.

  136. G. N. Yakovenko, “Invariance criterion for control systems,” In:Optimization Methods and Operations Research. Applied Mathematics [in Russian], Irkutsk (1976), pp. 71–78.

  137. G. N. Yakovenko, “Group approach to controllability and invariance of dynamic systems,”Kibern. Vychisl. Tekh. (Kiev), No. 39, 26–39 (1978).

    MathSciNet  Google Scholar 

  138. G. N. Yakovenko, “On the group approach to the problem of invariancy of systems with controllability property,” In:Dynamics of Control Systems [in Russian], Nauka, Novosibirsk (1979), pp. 329–335.

    Google Scholar 

  139. G. N. Yakovenko, “Decomposition of nonlinear control systems with group symmetry,” In:Mechanics of Gyroscopic Systems (Kiev) [in Russian], No. 5 (1986), pp. 131–137.

  140. G. N. Yakovenko, “State symmetry in systems with control,”Applied Mathematics and Mechanics [in Russian], Bauman Physical Engineering Institute, Moscow (1992), pp. 155–176.

    Google Scholar 

  141. G. N. Yakovenko,Group Properties of Dynamic Systems. The Finite-Dimensional Case [in Russian], Bauman Physical Engineering Institute, Moscow (1994).

    Google Scholar 

  142. G. N. Yakovenko, “Invariant synthesis of regular systems,” In:Problems of Mathematics in Physical and Engineering Problems [in Russian], Bauman Physical Engineering Institute, Moscow (1994), pp. 186–210.

    Google Scholar 

  143. A. A. Agrachev and R. V. Gamkrelidze, “Local controllability and semigroups of diffeomorphisms,”Acta Appl. Math.,32, No. 1, 1–57 (1993).

    MathSciNet  Google Scholar 

  144. M. Aoki, “Control of large scale dynamic systems by aggregation,”IEEE Trans. Autom. Contr.,AC-13, No. 3, 246–253 (1968).

    Google Scholar 

  145. R. W. Brockett, “Control theory and analytical mechanics,” In:Geometric Control Theory (B. Hermann, C. Martin, et al.), Math. Sci. Press, Brookline, Massachusetts (1977), pp. 1–46.

    Google Scholar 

  146. M. D. Di Benedetto and P. Lucibello, “Inversion of nonlinear time varying systems,”IEEE Trans. Autom. Contr.,38, No. 8, 1259–1264 (1993).

    Google Scholar 

  147. J. M. Dion and C. Commault, “Feedback decoupling of structured systems,”IEEE Trans. Autom. Contr.,38, No. 7, 1132–1135 (1993).

    MathSciNet  Google Scholar 

  148. H. T. Dorison, “A method for bilinear system identification: Automatic Control,” In:Proc. 11th Trienn World Congr. Autom. Contr., Tallin, 11–17 Aug. 1990, Vol. 2, Oxford (1991), pp. 143–148.

  149. M. Fliess Michel, J. Levine, M. Philippe, and R. Pierre, “Flatness and defect of nonlinear systems,”Abstr. Int. Geom. Colloq., Moscow, 10–14 May, 1993, Moscow (1993), pp. 33–34.

  150. R. Hermann, “On the accessibility problem in control theory,”Int. Symp. Nonl. Diff. Eqs. Nonl. Mech., New York (1963), 325–332.

  151. R. Hermann and A. J. Krener, “Nonlinear controllability and observability,”IEEE Trans. Autom. Contr.,AC-22, 728–740 (1977).

    MathSciNet  Google Scholar 

  152. R. M. Hirschorn, “(A,B)-invariant distributions and the disturbance decoupling of nonlinear systems,”SIAM J. Contr. Optimiz.,19, No. 1, 1–19 (1981).

    MATH  MathSciNet  Google Scholar 

  153. A. Isidory, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear decoupling via feedback: a differential geometric approach,”IEEE Trans. Autom. Contr.,26, 331–345 (1981).

    Google Scholar 

  154. M. Ikeda and K. Sakamoto, “On the concept of symmetry in Pontryagin's maximum principle,”SIAM J. Contr.,14, No. 4, 700–711 (1975).

    MathSciNet  Google Scholar 

  155. A. J. Krener, “Decomposition theory for differential systems: disturbance decoupling of nonlinear systems,”SIAM J. Contr. Opt.,15, No. 5, 813–829 (1977).

    MATH  MathSciNet  Google Scholar 

  156. P. S. Muller and K. Popp, “Zur theorie der ersten integrale bie gesteurte mechanichen systemen,”Angew. Math. Mech.,54, No. 11, 695–702 (1974).

    MathSciNet  Google Scholar 

  157. K. Negoita,Management Applications of Systems Theory, Verlag, Stuttgart (1981).

    Google Scholar 

  158. H. Nymeijer, “Feedback decomposition of nonlinear control systems,”IEEE Trans. Autom. Contr.,28, No. 8, 861–863 (1983).

    Google Scholar 

  159. H. Nymeijer and A. I. Van der Schaft, “Controlled invariance for nonlinear systems,”IEEE Trans. Autom. Contr.,27, No. 8, 904–914 (1982).

    Google Scholar 

  160. H. Nymeijer and A. I. Van der Schaft, “Partial symmetries for nonlinear systems,”Math. Syst. Theory,18, 79–96 (1985).

    Google Scholar 

  161. J. Rodellar, G. Leitman, and E. P. Ryan, “Output feedback control of uncertain coupled systems,”Int. J. Contr.,58, No. 2, 445–457 (1993).

    Google Scholar 

  162. H. J. Sussmann, “Existence and uniquencess of minimal realization of nonlinear systems,”Math. Syst. Theory,10, No. 3, 263–284 (1978).

    MathSciNet  Google Scholar 

  163. H. J. Sussmann, “Differential-geometric methods: a powerful set of new tools for optimal control,”Lect. Notes Comput. Sci., No. 653, 301–314 (1992).

    MathSciNet  Google Scholar 

  164. H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,”Trans. Amer. Math. Soc.,18, 171–188 (1973).

    MathSciNet  Google Scholar 

  165. T. J. Tarn and W. Zhan, “Input-output decoupling and linearization via restricted static-state feed-back,” In:Proc. 11th Trienn World Congr. Autom. Contr., Vol. 3, Oxford (1991), pp. 287–292.

  166. K. Tchou and H. Nijmeijer, “On output linearization of observable dynamics,”Theor. Adv. Tech.,9 No. 4, 819–857 (1993).

    Google Scholar 

  167. A. J. Van der Shaft, “On realization of nonlinear systems described by higher-order differential equations,”Math. Syst. Theory,19, 239–275 (1987).

    Google Scholar 

  168. J. C. Willems, “System theoretic models for analysis of physical systems,”Ric. Aut., No. 10, 71–106 (1979).

    MATH  MathSciNet  Google Scholar 

  169. J. C. Willems, “Input-output and state-space representations of finite-dimensional linear time-invariant systems,”Linear Algebra Appl., No. 50, 581–608 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  170. J. C. Willems, “From time series to linear systems,”Automatica,22, No. 5, 561–580 (1986); No. 6, 675–694 (1986);23, No. 1, 87–115 (1987).

    MATH  MathSciNet  Google Scholar 

  171. Zhou Hong, “A very simple method for constructing the smallest realization,”Control Theory Applic.,10, No. 4, 118–119 (1993).

    Google Scholar 

  172. Xia Xiao Hua, “Parametrization of decoupling control laws for affine nonlinear systems,”IEEE Trans. Autom. Contr.,38, No. 6, 916–928 (1993).

    MathSciNet  Google Scholar 

  173. Xia Xiao Hua, “On the solution and its uniqueness of nonlinear decoupling problems,”J. Syst. Sci. Math. Sci.,13, No. 4, 289–296 (1993).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 29, Optimizatsiya i Upravlenie-1, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkin, V.I., Pavlovskii, Y.N. Decomposition of models of control processes. J Math Sci 88, 723–761 (1998). https://doi.org/10.1007/BF02364667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364667

Keywords

Navigation