Journal of Mathematical Sciences

, Volume 88, Issue 5, pp 587–657 | Cite as

Methods of invariant analysis for linear control systems

  • N. I. Osetinskii
Article

Keywords

Control System Linear Control Invariant Analysis Linear Control System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. H. Andreev, “Algebraic methods of the state space in the theory of control of linear objects (review of foreign literature),”Avtomat. Telemekh., No. 3, 5–50 (1977).MATHGoogle Scholar
  2. 2.
    I. K. Asmykovich, R. Gabasov, F. M. Kirillova, and V. M. Marchenko, “Control of finite-dimensional systems,”Avtomat. Telemekh., No. 11, 5–29 (1986).MathSciNetGoogle Scholar
  3. 3.
    V. E. Belozerov and G. V. Mozhaev, “On the uniqueness of the solutions of problems of decomposition and aggregation of linear automatic control systems,” In:Theory of Complex Systems and Their Simulation Methods [in Russian], VINIISI, Moscow (1982), pp. 4–13.Google Scholar
  4. 4.
    V. E. Belozerov and G. V. Mozhaev, “On the decomposition of linear stationary automatic control systems,”Kibern. Vyshisl. Tekh., (Kiev), No. 54, 10–16 (1982).Google Scholar
  5. 5.
    E. B. Vinberg and V. L. Papov, “Invariant theory,” In:Progress in Science and Technology. Series on Contemporary Problems in Mathematics. Fundamental Trends, [in Russian], Vol. 55, VINITI, Akad. Nauk SSSR, Moscow (1989), pp. 137–314.Google Scholar
  6. 6.
    F. R. Gantmahker,Matrix Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  7. 7.
    V. V. Krylov, “Construction of models of the internal structure of dynamic systems from input-output relations (abstract realization theory). Parts I, II,”Avtomat. Telemekh., No. 2, 5–15 (1984); No. 3, 5–19 (1984).MATHGoogle Scholar
  8. 8.
    N. I. Osetinskii, “On the theory of realization of linear stationary dynamic systems over a field. I, II, III,”Programmirovanie, No. 3, 75–85 (1975); No. 4, 58–68 (1975); No. 1, 70–76 (1976).MathSciNetGoogle Scholar
  9. 9.
    N. I. Osetinskii, “Certain results of the modern systems theory: A review,” In:Mathematical Methods of the Systems Theory [in Russian], Mir, Moscow (1979), pp. 271–327.Google Scholar
  10. 10.
    N. I. Osetinskii, “On the basis of invariants of linear controlled systems,” In:Theory of Complex Systems and Their Simulation Methods [in Russian], VINIISI, Moscow (1988), pp. 76–81.Google Scholar
  11. 11.
    N. I. Osetinskii, “Certain results and methods of the modern linear systems theory: A review,” In:Theory of Systems. Mathematical Methods and Simulation [in Russian], Mir, Moscow (1989), pp. 328–379.Google Scholar
  12. 12.
    Ya. I. Roitenberg,Automatic Control [in Russian], Nauka, Moscow (1992).Google Scholar
  13. 13.
    R. G. Faradzhev,Linear Sequential Machines [in Russian], Sov. Radio, Moscow (1975).Google Scholar
  14. 14.
    I. R. Shafarevich,Basic Algebraic Geometry [in Russian], Nauka, Moscow (1972).Google Scholar
  15. 15.
    M. Aigner,Combinatorial Theory, Springer-Verlag, Berlin (1979).Google Scholar
  16. 16.
    B. D. O. Anderson, M. A. Arbib, and E. G. Manes, “Foundations of system theory: finitary and infinitary conditions,”Lect. Notes Econ. Math. Sys.,115 Springer-Verlag, Berlin (1979).Google Scholar
  17. 17.
    B. D. O. Anderson, N. K. Bose, and E. I. Jury, “Output feedback stabilization and related problems —solution via decision algebra methods,”IEEE Trans. Autom. Contr.,20, 53–66 (1975).MathSciNetGoogle Scholar
  18. 18.
    B. D. O. Anderson and D. G. Luenberger, “Design of multivariable feedback systems,”Proc. IEEE,114, No. 6, 395–399 (1967).Google Scholar
  19. 19.
    B. D. O. Anderson and R. W. Scott, “Output feedback stabililization—solution by algebraic geometry methods,”Proc. IEEE,65, No. 6, 849–861 (1977).Google Scholar
  20. 20.
    M. A. Arbib, “Coproducts and group machines,”J. Comp. Syst. Sci.,7, 278–287 (1973).MATHMathSciNetGoogle Scholar
  21. 21.
    M. A. Arbib and E. G. Manes, “Foundations of system theory: decomposable systems,”Automatica, No. 10, 285–302 (1974).CrossRefMathSciNetGoogle Scholar
  22. 22.
    M. A. Arbib and E. G. Manes, “Machines in a category: an expository introduction,”SIAM Rev.,16, 163–192 (1974).CrossRefMathSciNetGoogle Scholar
  23. 23.
    M. A. Arbib and H. P. Zeiger, “On the relevance of abstract algebra to control theory,”Automatica,5, 589–606 (1969).CrossRefMathSciNetGoogle Scholar
  24. 24.
    L. Baratchart, “On the parametrization of linear constant systems,”SIAM J. Contr. Optimiz.,23, No. 5, 752–773 (1985).MATHMathSciNetGoogle Scholar
  25. 25.
    R. R. Bitmead, S. Y. Kung, B. D. O. Anderson, and T. Kailath, “Greatest common divisors via generalized Sylvester and Besout matrices,”IEEE Trans. Autom. Contr.,23, 1043–1047 (1978).CrossRefMathSciNetGoogle Scholar
  26. 26.
    F. M. Brasch and J. B. Pearson, “Pole placement using dynamic compensators,”IEEE Trans. Autom. Contr.,15, No. 1, 34–43 (1970).MathSciNetGoogle Scholar
  27. 27.
    R. Brockett, “Some geometric questions in the theory of linear systems,”IEEE Trans. Autom. Contr.,21, No. 1, 449–455 (1976).MATHMathSciNetGoogle Scholar
  28. 28.
    R. Brockett, “The geometry of the set of controllable systems,”Res. Report Autom. Contr. Lab., Nagoya Univ.,24, 1–7 (1977).MathSciNetGoogle Scholar
  29. 29.
    R. Brockett and C. I. Byrnes, “Multivariable Nyquist criteria, root loci and pole placement: A geometric viewpoint,”IEEE Trans. Autom. Contr.,26, No. 1, 271–284 (1981).MathSciNetGoogle Scholar
  30. 30.
    P. Brunovsky, “A classification of linear controlled systems,”Kibernetika,6, No. 3, 173–188 (1970).MATHMathSciNetGoogle Scholar
  31. 31.
    C. I. Byrnes, “The moduli space for linear dynamical systems,” In:Geometric Control Theory, Math. Sci. Press, Brookline, Massachusetts (1977), pp. 229–276.Google Scholar
  32. 32.
    C. I. Byrnes, “On the control of certain deterministic infinite dimensional systems by algebro-geometric techniques,”Amer. J. Math.,100, 1333–1381 (1979).MathSciNetGoogle Scholar
  33. 33.
    C. I. Byrnes, “On certain problems of arithmetic arising in the realization of linear systems with symmetries,”Asterisque,75,76, 57–65 (1980).MATHMathSciNetGoogle Scholar
  34. 34.
    C. I. Byrnes, “Algebraic and geometric aspects of the analysis of feedback systems,” In:Geometric Methods in Linear Systems Theory, North-Holland, Amsterdam (1980), pp. 85–124.Google Scholar
  35. 35.
    C. I. Byrnes, “Control theory, inverse spectral problems, and real algebraic geometry,” In:Diff. Geom. Methods in Control Theory, Birkhauser, Boston (1982).Google Scholar
  36. 36.
    C. I. Byrnes, “On the stabilization of the multivariable systems and the Ljusternik-Snirel'mann category of real Grassmannians,”Syst. Contr. Lett.,3, 255–266 (1983).CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    C. I. Byrnes, “Pole assignment by output feedback,” In:Lect. Notes Contr. Inform. Sci.,135, Springer-Verlag (1989), pp. 31–78.Google Scholar
  38. 38.
    C. I. Byrnes and B. D. O. Anderson, “Output feedback and generic stabilizability,”SIAM J. Contr. Optimiz. 22, No. 3, 362–380 (1984).MathSciNetGoogle Scholar
  39. 39.
    C. I. Byrnes and T. E. Duncan, “On certain topological invariants arising in system theory,” In:New Directions in Appl. Math., Springer-Verlag, New York (1982), pp. 29–71.Google Scholar
  40. 40.
    C. I. Byrnes and P. Falb, “Applications of algebraic geometry in system theory,”Amer. J. Math.,101, 337–363 (1979).MathSciNetGoogle Scholar
  41. 41.
    C. I. Byrnes and U. Helmke, “Intersection theory for linear systems,” In:Proc. 25th IEEE Conf. Decision and Contr., Athens (1986), pp. 1944–1949.Google Scholar
  42. 42.
    C. I. Byrnes and N. E. Hurt, “On the moduli of linear dynamical systems,”Adv. Math. Studies Anal., No. 4, 83–122 (1979).MathSciNetGoogle Scholar
  43. 43.
    C. I. Byrnes and P. K. Stevens, “Global properties of root-locus map,” In:Lect. Notes Contr. Inf. Sci.,39, Springer-Verlag (1982), pp. 9–25.Google Scholar
  44. 44.
    D. F. Delchamps, “Global structure of families of multivariable linear systems with an application to identification,”Math. Syst. Theory,18, 329–380 (1985).CrossRefMathSciNetGoogle Scholar
  45. 45.
    S. Eilenberg, “Automata, Languages and Machines, Vol. A, Academic Press, New York (1974).Google Scholar
  46. 46.
    C. Ehresmann, “Sur la topologie de certains espace homogenes,”Ann. Math.,35, 396–443 (1934).MATHMathSciNetGoogle Scholar
  47. 47.
    G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems,”SIAM J. Contr. Optimiz.,13, 493–520 (1975).MATHMathSciNetGoogle Scholar
  48. 48.
    P. Fuhrmann, “Algebraic system theory: An analyst's point of view,”J. Franklin Inst.,301, 521–540 (1976).MATHMathSciNetGoogle Scholar
  49. 49.
    B. K. Ghosh, “Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems,”SIAM J. Contr. Optimiz.,24, 1091–1109 (1986).MATHGoogle Scholar
  50. 50.
    C. G. Gibson, Wirthmuller K., et al.,Lect. Notes Math.,552, Springer-Verlag (1977).Google Scholar
  51. 51.
    J. M. Gracia, I. De Hoyos, and I. Zaballa, “A characterization of feedback equivalence,”SIAM J. Contr. Optimiz. 28, No. 5, 1103–1112 (1990).Google Scholar
  52. 52.
    M. K. J. Hautus, “Controllability and observability conditions of linear autonomous systems,” In:Proc. Kon. Nederlande Akademie van Wetenschappen, Amsterdam (1969), Ser. A. 72, No. 5, pp. 443–448.Google Scholar
  53. 53.
    M. K. J. Hautus, “Stabilization, controllability, and observability of linear autonomous systems,” In:Proc. Kon. Nederlande Akademic van Wetenschappen, Amsterdam (1970), Ser. A. 73, No. 5, pp. 448–455.Google Scholar
  54. 54.
    M. K. J. Hautus and E. Sontag, “New results on pole-shifting for parametrized families of systems,”J. Pure Appl. Algebra,40, 229–244 (1986).CrossRefMathSciNetGoogle Scholar
  55. 55.
    M. Hazewinkel, “Moduli and canonical forms of linear dynamical systems II: The topological case,”Math. Syst. Theory,10, 363–385 (1977).MATHMathSciNetGoogle Scholar
  56. 56.
    M. Hazewinkel, “Moduli and canonical forms for linear dynamical systems III: The algebraic geometric case,” In:Proc. NASA-AMS Conf. on Geom. Contr. Theory, Math. Sci. Press (1977), pp. 291–336.Google Scholar
  57. 57.
    M. Hazewinkel, “On the (internal) symmetry groups of linear dynamical systems,” In:Groups, Systems and Many-Body Physics, Viewe (1979), pp. 362–404.Google Scholar
  58. 58.
    M. Hazewinkel, “(Fine) moduli (spaces) for linear systems: What are they and what are they good for,” In:Proc. NATO-AMS Adv. Study Inst., Reidel Publ. (1979), pp. 125–193.Google Scholar
  59. 59.
    M. Hazewinkel, “On families of linear dynamical systems: degeneracy phenomena,” In:Proc. NATO-AMS Conf. Algebraic and Geometric Meth. Linear Syst. Theory (1979), pp. 157–190.Google Scholar
  60. 60.
    M. Hazewinkel, “A partial survey of the uses of algebraic geometry in systems and control theory,” In:Sym. Math. INDAM (Severi Centennial Conference, 1979), Academic Press (1981), pp. 245–292.Google Scholar
  61. 61.
    M. Hazewinkel, “Lectures on invariants, representations and Lie algebras in systems and control theory,” In:Lect. Notes Math.,1029, Springer-Verlag (1984), pp. 1–36.Google Scholar
  62. 62.
    M. Hazewinkel and R. E. Kalman, “On invariants, canonical forms and moduli for linear, constant, finite dimensional dynamical systems,” In:Lect. Notes Econ. Math. Syst. Theory,131, Springer-Verlag (1976), pp. 48–60.Google Scholar
  63. 63.
    M. Hazewinkel and C. Martin, “Representations of the symmetric group, the specialization order, systems and the Grassmann manifold,”L'Enscign. Math.,29, 53–87 (1983).MathSciNetGoogle Scholar
  64. 64.
    M. Hazewinkel and C. Martin, “Symmetric linear systems: an application of algebraic systems theory,”Int. J. Contr.,37, 1371–1384 (1983).MathSciNetGoogle Scholar
  65. 65.
    M. Hazewinkel and C. Martin, “Special structure, decentralizations and symmetry for linear systems,”Lect. Notes Contr. Inform. Sci.,58, Springer-Verlag (1984), pp. 437–440.Google Scholar
  66. 66.
    M. Hazewinkel and A. M. Perdon, “On the theory of families of linear dynamical systems,” In:Proc. MTNS'79 (1979), pp. 155–161.Google Scholar
  67. 67.
    U. Helmke, “Topology of the, moduli space for reachable linear dynamical systems: The complex case,”Math. Syst. Theory, No. 19, 155–187 (1986).CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    U. Helmke, “Linear dynamical systems and instantons in Yang-Mills theory,”IMA J. Math. Contr. Inf.,3, 151–166 (1986).MATHGoogle Scholar
  69. 69.
    U. Helmke, “A global parametrization of asymptotically stable linear systems,”Syst. Contr. Lett.,13, (1989).Google Scholar
  70. 70.
    U. Helmke, “The cohomology of moduli spaces of linear dynamical systems,” In:Habilitatiosschrift, Regensburg Univ., (1990), pp. 1–163.Google Scholar
  71. 71.
    R. Hermann and C. Martin, “Application of algebraic geometry to systems theory: Part, I,”IEEE Trans. Autom. Contr.,22, 19–25 (1977).MathSciNetGoogle Scholar
  72. 72.
    R. Hermann and C. Martin, “Application of algebraic geometry to systems theory: Part II: The McMillan degree and Kronecker indices as topological and holomorphic invariants,”SIAM J. Contr. Optimiz.,16, 743–755 (1978).MathSciNetGoogle Scholar
  73. 73.
    M. Heymann, “Pole assignment in multi-input linear systems,”IEEE Trans. Autom. Contr.,13, No. 6, 748–749 (1968).MathSciNetGoogle Scholar
  74. 74.
    H. I. Hiller, “On the height of the first Stiefel-Whitney class,”Proc. Amer. Math. Soc.,79, 495–498 (1980).MATHMathSciNetGoogle Scholar
  75. 75.
    D. Hinrichsen and D. Prätzel-Wolters, “Generalized Hermite matrices and complete invariants of strict system equivalence,”SIAM J. Contr. Optimiz.,21, 298–305 (1983).CrossRefGoogle Scholar
  76. 76.
    D. Hinrichsen and D. Prätzel-Wolters, “A canonical form for static linear output feedback,”Lect. Notes Contr. Inf. Sci.,58, 441–462 (1984).Google Scholar
  77. 77.
    D. Hinrichsen and D. Prätzel-Wolters, “A Jordan canonical form for reachable linear systems,”Linear Algebra Appl.,122–124, 143–175 (1989).Google Scholar
  78. 78.
    B. L. Ho and R. E. Kalman, “Effective construction of linear state variable models from input/output functions,”Regelungstechnik,14, 545–548 (1966).Google Scholar
  79. 79.
    T. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1980).Google Scholar
  80. 80.
    R. E. Kalman, “Canonical structure of linear dynamical systems,”Proc. Natl. Acad. Sci. USA,48, No. 4, 596–600 (1962).MATHMathSciNetGoogle Scholar
  81. 81.
    R. E. Kalman, “Mathematical description of linear dynamical systems,”SIAM J. Contr. Optimiz,1, 152–192 (1963).CrossRefMATHMathSciNetGoogle Scholar
  82. 82.
    R. E. Kalman, “Kronecker invariants and feedback,” In:Proc. Conf. Ordinary Diff. Eqs., Washington (1971), pp. 459–471.Google Scholar
  83. 83.
    R. E. Kalman, “Algebraic geometric description of the class of linear systems of constant dimension”, In:8th Annual Princeton Conf. Inform. Sci. Systs., Princeton, New Jersey (1974).Google Scholar
  84. 84.
    R. E. Kalman, P. Falb, and M. A. Arbib,Topics in Mathematical System Theory, McGraw Hill, New York (1965).Google Scholar
  85. 85.
    H. Kimura, “Pole assignment by gain output feedback,”IEEE Trans. Autom. Contr.,20, 509–516 (1975).CrossRefMATHGoogle Scholar
  86. 86.
    H. Kimura, “A further result on the problem of pole assignment by output feedback,”IEEE Trans. Autom. Contr.,22, 509–516 (1977).Google Scholar
  87. 87.
    H. Kraft,Geometrische Methoden in der Invariaten Theorie, Vieweg, Braunschweig-Wiesbaden (1984).Google Scholar
  88. 88.
    P. S. Krishnaprasad and C. Martin, “On families of systems and deformations”Int. J. Contr.,38, No. 5, 1055–1079 (1983).MathSciNetGoogle Scholar
  89. 89.
    C. E. Langenhop, “On the stabilization of linear systems,”Proc. Amer. Math. Soc.,15, No. 5, 735–742 (1964).MATHMathSciNetGoogle Scholar
  90. 90.
    V. G. Lomadze, “Finite dimensional time invariant linear dynamical systems. Algebraic theory,”Acta Appl. Math.,19, 149–201 (1990).MATHMathSciNetGoogle Scholar
  91. 91.
    D. G. Luenberger, “Canonical forms for linear multivariable systems,”IEEE Trans. Autom. Contr.,12, No. 3, 290–293 (1967).MathSciNetGoogle Scholar
  92. 92.
    A. G. J. MacFarlane, “Linear multivariable feedback theory: a survey,”Automatica,8, 455–492 (1972).CrossRefMATHMathSciNetGoogle Scholar
  93. 93.
    A. G. J. MacFarlane, “Trends in linear multivariable feedback control theory,”Automatica,2, 273–277 (1973).Google Scholar
  94. 94.
    W. Massey,Homology and Cohomology Theory, Marcel Dekker, New York (1978).Google Scholar
  95. 95.
    D. Q. Mayne, “A canonical model for identification of multivariable systems,”IEEE Trans. Autom. Contr.,17, 728–729 (1972).CrossRefMATHMathSciNetGoogle Scholar
  96. 96.
    B. McMillan, “Introduction to formal realizability theory,”Bell System Tech. J.,31, 217–279, 591–600 (1952).MathSciNetGoogle Scholar
  97. 97.
    A. S. Morse, “Ring models for delay-differential systems,”Automatica,12, 529–531 (1976).CrossRefMATHMathSciNetGoogle Scholar
  98. 98.
    D. Mumford,Algebraic Geometry. I: Complex Projective Varieties, Springer-Verlag, New York (1976).Google Scholar
  99. 99.
    D. Mumford and J. Fogarty,Geometric Invariant Theory, Springer-Verlag, Berlin (1982).Google Scholar
  100. 100.
    P. E. Newstead,Introduction to Moduli Problems and Orbit Spaces, Tata Inst. of Fund. Research, Bombay (1978).Google Scholar
  101. 101.
    V. M. Popov, “Hyperstability and optimality of automatic systems with several control functions,”Rev. Roum. Sci. Electrotech. Energ.,9, 629–690 (1964).Google Scholar
  102. 102.
    V. M. Popov, “Invariant description of linear time invariant controllable systems,”SIAM J. Contr. Optimiz.,10, 252–264 (1972).CrossRefMATHGoogle Scholar
  103. 103.
    I. Postlethwaite and A. G. J. MacFarlane, “A complex variable approach to the analysis of linear multivariable feedback systems,”Lect. Notes Contr. Inform. Sci.,12, Springer-Verlag (1979).Google Scholar
  104. 104.
    I. Postlethwaite, A. G. J. MacFarlane, and J. M. Edmunds, “Principal gains and principal phases in the analysis of linear multivariable feedback systems,”IEEE Trans. Autom. Contr.,26, 32–46 (1981).CrossRefMathSciNetGoogle Scholar
  105. 105.
    C. Processi, “The invariant theory of n×n-matrices,”Adv. Math.,19, 306–381 (1976).Google Scholar
  106. 106.
    R. Rado, “A theorem on independence relations,”Q. J. Math. 13, 83–89 (1962).Google Scholar
  107. 107.
    H. H. Rosenbrock,State Space and Multivariable Theory, Wiley, New York (1970).Google Scholar
  108. 108.
    J. Rosenthal, “Tuning natural frequencies of output feedback,” In:Computation and Control, Birkhäuser, Boston (1989), pp. 276–282.Google Scholar
  109. 109.
    J. Rosenthal, “New results in pole assignment by real output feedback,”SIAM J. Contr. Optimiz.,30, No. 1, 203–211 (1992).MATHGoogle Scholar
  110. 110.
    J. Rosenthal, “A compactification of the space of multivariable systems using geometric invariant theory,”J. Math. Systems, Estimation, Contr.,1, 111–121 (1992).Google Scholar
  111. 111.
    Y. Rouchaleau and E. Sontag, “On the existence of minimal realizations of linear dynamical systems over Noetherian integral domains,”J. Comp. Syst. Sci.,18, 65–75 (1979).MathSciNetGoogle Scholar
  112. 112.
    Y. Rouchaleau and B. Wyman, “Linear dynamical systems, over integral domains,”J. Comp. Syst. Sci.,9, No. 2, 129–142 (1974).MathSciNetGoogle Scholar
  113. 113.
    Y. Rouchaleau and B. Wyman, and R. E. Kalman, “Algebraic structure of linear dynamical systems III. Realization theory over commutative rings,”Proc. Natl. Acad. Sci. USA.,69, 3404–3406 (1972).MathSciNetGoogle Scholar
  114. 114.
    H. Seraji, “Design of pole placement compensators for multivariable systems,”Automatica,16, 335–338 (1980).CrossRefMATHMathSciNetGoogle Scholar
  115. 115.
    E. Sontag, “Linear systems over commutative rings: A survey,”Ric. Autom.,7, 1–34 (1976).Google Scholar
  116. 116.
    T. A. Springer, “The unipotent variety of a semisimple group,” In:Proc. Bombay Coll. Algebr. Geometry (1969), pp. 379–391.Google Scholar
  117. 117.
    R. Steinberg, “Desingularization on the unipotent variety,”Invent. Math., 209–224 (1976).Google Scholar
  118. 118.
    A. Tannenbaum, “Invariance and system theory: Algebraic and geometric aspects,”Lect. Notes Math.,845, Springer-Verlag (1981).Google Scholar
  119. 119.
    M. Vidyasagar, H. Schneider, and B. A. Francis, “Algebraic and topological aspects of feedback stabilization,”IEEE Trans. Autom. Contr.,27, No. 4, 880–894 (1982).MathSciNetGoogle Scholar
  120. 120.
    X.-C. Wang, “Géometric inverse eigenvalue problems,” In:Computation and Control, Birkhäuser, Boston (1983).Google Scholar
  121. 121.
    H. Whitney,Complex Analytic Varieties, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
  122. 122.
    J. C. Willems, “From time series to linear systems,”Automatica,22 (1986); No. 5, 561–580 (1986); No. 6, 675–694 (1986);23, No. 1, 87–115 (1987).Google Scholar
  123. 123.
    J. C. Willems and W. H. Hesselink, “Generic properties of the pole-placement, problem,” In:Proc. 7th IFAC Congr. (1978), pp. 1725–1729.Google Scholar
  124. 124.
    W. M. Wonham,Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York (1979).Google Scholar
  125. 125.
    W. M. Wonham and A. S. Morse, “Decoupling and pole assignment in linear multivariable systems: a geometric approach,”SIAM J. Contr.,8, No. 1, 1–18 (1970).MathSciNetGoogle Scholar
  126. 126.
    W. M. Wonham and A. S. Morse, “Feedback invariants of linear multivariable systems,”Automatica,8, No. 1, 93–100 (1972).MathSciNetGoogle Scholar
  127. 127.
    B. F. Wymen, “Pole placement over integral domains,”Commun. Algebra,6, 969–993 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • N. I. Osetinskii

There are no affiliations available

Personalised recommendations