Skip to main content
Log in

A mathematical study of human intracranial hydrodynamics part 2—Simulation of clinical tests

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mathematical model of human intracranial hydrodynamics proposed in a previous paper is here used to simulate the results of some dynamical tests of great clinical and physiological value and to analyze the blood flow pattern in the intracranial human basal arteries (especially in the internal carotid artery). Peak to peak amplitude of the blood flow waveform in the intracranial basal arteries, computed through the model, shows a significant increase at intracranial pressure levels above 50–60 mmHg, in accordance with recent experimental data. Moreover, diastolic blood flow appears to be largely sensitive to intracranial pressure changes during severe intracranial hypertension, whereas systolic blood flow is only slightly affected in this condition. The response of intracranial pressure to typical saline injection (volumepressure response, steady state infusion and bolus injection tests) and to an abrupt obstruction in the extrancranial venous drainage pathway is also well reproduced by the model. Finally, alterations in these responses, due to changes in some significant intracranial hydrodynamical parameters (i.e., the intracranial elastance coefficient and CSF outflow resistance) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaslid, R.; Markwalder, T.M.; Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57: 769–774; 1982.

    CAS  PubMed  Google Scholar 

  2. Avezaat, C.J.J.; van Eijndhoven, J.H.M. The role of the pulsating pressure variations in intracranial pressure monitoring. Neurosurg. Rev. 9: 113–120; 1986.

    Article  CAS  PubMed  Google Scholar 

  3. Avezaat, C.J.J.; van Eijndhoven, J.H.M.; Wyper, D.J. Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationship. J. Neurol. Neurosurg. Psych. 42: 687–700; 1979.

    CAS  Google Scholar 

  4. Baumbach, G.L.; Heistad, D.D. Regional segmental and temporal heterogeneity of cerebral vascular autoregulation. Ann. Biomed. Eng. 13: 303–310; 1985.

    CAS  PubMed  Google Scholar 

  5. Belardinelli, E.; Gnudi, G.; Ursino, M. A simulation study of physiological mechanisms controlling cerebral blood flow in venous hypertension. IEEE Trans. Biomed. Eng. 32: 806–816; 1985.

    CAS  PubMed  Google Scholar 

  6. Cuypers, J.; Matakas, F.; Potolicchio, S.J. Effect of central venous pressure on brain tissue pressure and brain volume. J. Neurosurg. 45: 89–94; 1976.

    CAS  PubMed  Google Scholar 

  7. Eijndhoven van, J.H.M.; Avezaat, C.J.J. The CSF pulse pressure as indicator of intracranial elastance: The role of the pulsating changes in cerebral blood volume. In: Ishii, S.; Nagai, H.; and Brock, M. eds. Intracranial Pressure V. Berlin, Heidelberg: Springer-Verlag; 1983: pp. 191–196.

    Google Scholar 

  8. Eijndhoven van, J.H.M.; Avezaat, C.J.J. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: An experimental study in dogs. Neurosurgery 19: 507–522; 1986.

    PubMed  Google Scholar 

  9. Ekstedt, J. CSF hydrodynamic studies in man: Method of constant pressure CSF infusion. J. Neurol. Neurosurg. Psych. 40; 105–119; 1977.

    CAS  Google Scholar 

  10. Ekstedt, J. CSF hydrodynamic studies in man. 2: Normal hydrodynamic variables related to CSF pressure and flow. J. Neurol. Neurosurg. Psych. 41: 345–353; 1978.

    CAS  Google Scholar 

  11. Giulioni, M.; Ursino, M.; Gallerani, M.; Cavalcanti, S.; Paolini, F.; Cerisoli, M.; Alvisi, C. Epidural pressure measurement in the rat. J. Neurosurg. Sci. 30: 177–181; 1986.

    CAS  PubMed  Google Scholar 

  12. Harders, A. Neurosurgical applications of transcranial Doppler sonography. New York: Springer-Verlag, Wien; 1986.

    Google Scholar 

  13. Harper, S.L.; Bohlen, G.; Rubin, M.J. Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am. J. Physiol. 246: H17-H24; 1984.

    CAS  PubMed  Google Scholar 

  14. Hillen, B.; Gaasbeek, T.; Hoogstraten, H.W. A mathematical model of the flow in the posterior communicating arteries. J. Biomech. 15: 441–448; 1982.

    Article  CAS  PubMed  Google Scholar 

  15. Katzman, R.; Hussey, F. A simple constant infusion manometric test for measurement of CSF absorption. I: Rationale and method. Neurology (Minneapolis) 20: 534–544; 1970.

    CAS  Google Scholar 

  16. Kontos, H.A.; Wei, E.P.; Novari, R.M.; Levasseur, J.E.; Rosenblum, W.I.; Patterson, J.L. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol. 234 (4): H371-H383; 1978.

    CAS  PubMed  Google Scholar 

  17. Lindegaard, K.F.; Grip, A.; Nornes, H. Precerebral hemodynamics in brain tamponade. Neurochirurgia 23: 133–142; 1980.

    CAS  PubMed  Google Scholar 

  18. Lindegaard, K.F.; Grip, A.; Nornes, H. Precerebral hemodynamics in brain tamponade, part 2: Experimental studies. Neurochirurgia 23: 187–196; 1980.

    CAS  PubMed  Google Scholar 

  19. Marmarou, A.; Schulman, K.; LaMorgese, J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg. 43: 523–534; 1975.

    CAS  PubMed  Google Scholar 

  20. Marmarou, A.; Schulman, K.; Rosende, R.M. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J. Neurosurg. 48: 332–344; 1978.

    CAS  PubMed  Google Scholar 

  21. Mchedlishvili, G.I. Physiological mechanisms regulating cerebral blood flow. Stroke 11: 240–248; 1980.

    CAS  PubMed  Google Scholar 

  22. Mchedlishvili, G.I. Arterial behavior and blood circulation in the brain. New York: Plenum Press; 1986.

    Google Scholar 

  23. Miller, J.D.; Stanek, A.; Langfitt, T.W. Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. In: Meyer, J.S.; Schade, J.P. eds. Progress in Brain Research. Amsterdam: Elsevier; 1972: pp. 411–432.

    Google Scholar 

  24. Nornes, H.; Aaslid, R.; Lindegaard, K.F. Intracranial pulse pressure dynamics in patients with intracranial hypertension. Acta Neurochirurgica 38: 177–186; 1977.

    CAS  PubMed  Google Scholar 

  25. Rungelstein, E.B. Transcranial Doppler monitoring. In: Aaslid, R. ed. Transcranial Doppler Sonography. New York: Springer-Verlag; 1986; pp. 147–163.

    Google Scholar 

  26. Uematsu, S.; Yang, A.; Preziosi, T.J.; Kouba, R.; Toung, T.J.K. Measurement of carotid blood flow in man and its clinical application. Stroke 14: 256–266; 1983

    CAS  PubMed  Google Scholar 

  27. Ursino, M. Mathematical simulation of human intracranial hydrodynamics. 1: The cerebrospinal fluid pulse pressure. Ann. Biomed. Eng. 16: 379–401; 1988.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ursino, M. A mathematical study of human intracranial hydrodynamics part 2—Simulation of clinical tests. Annals of Biomedical Engineering 16, 403–416 (1988). https://doi.org/10.1007/BF02364626

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364626

Keywords

Navigation