Skip to main content
Log in

Optimization of pulse train duration for the electrical stimulation of a skeletal muscle ventricle in the dog

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The optimal means of electrically stimulating a skeletal muscle to contract around a fluid-filled pouch (i.e., a skeletal muscle ventricle [SMV]) has not been determined. A SMV was made from the latissimus dorsi muscle in five dogs and the rectus abdominis muscle in five dogs, and each SMV was electrically stimulated via the motor nerve(s) to contract around a fluid-filled pouch, which was connected to a mock circulatory system. The pulse train duration (PTD) was varied from 100 ms to 800 ms in 100 ms increments to determine the effect of this variable upon SMV output. The pulse width of the electrical stimulus was kept constant at 100 μs and the pulse frequency was maintained at 50s−1. For SMV contraction rates of 20, 30, and 40 min−1, the optimal PTD was 400 ms for both muscles. The peak output was 710 ml min−1 for the rectus SMV and 556 ml min−1 for the latissimus SMV. For an SMV contraction rate of 10min−1, the optimal PTD was 800 ms for the rectus SMV and 600 ms for the latissimus SMV. Use of less than an optimal PTD caused reductions in SMV output of 25–50%. Although SMVs made from rectus abdominis and latissimus dorsi had similar values for the optimal PTD, the maximum SMV output was usually greater with the rectus abdominis in this acute study with untrained muscles. We conclude that PTD is an important variable to control, which can markedly affect results when studying the potential use of skeletal muscle power for cardiac assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker, M.A.; Hammond, R.L.; Mannion, J.D.; Salmons, S.; Stephenson, L.W. An autologous biologic pump motor. J. Thorac. Cardiovasc. Surg. 92:733–746; 1986.

    CAS  PubMed  Google Scholar 

  2. Armenti, F.; Bitto, T.; Macoviak, J.A.; et al. Transformation of canine diaphragm to fatigue-resistant muscle by phrenic nerve stimulation. Surgical Forum 35:258–260; 1984.

    Google Scholar 

  3. Badylak, S.F.; Stevens, L.; Janas, W.; et al. Cardiac assistance with electrically stimulated skeletal muscle. Med. Biol. Eng. Comput. 27:159–162; 1989.

    CAS  PubMed  Google Scholar 

  4. Badylak, S.F.; Hinds, M.; Geddes, L.A. Comparison of three methods of electrical stimulation for converting skeletal muscle to a fatigue resistant power source suitable for cardiac assistance. Ann. Biomed. Eng. 18(3):239–250; 1990.

    Article  CAS  PubMed  Google Scholar 

  5. Bitto, T.; Armenti, F.; Hoffman, R.K.; Stephenson, L.W.; Macoviak, J.A. Time course of transformation of dog diaphragm muscle with continuous low frequency stimulation at 10 Hz and 2 Hz Proceedings of Second Vienna Muscle Symposium, Vienna, Austria; pp. 175–179; 1985.

  6. Carpentier, A.; Chachques, J.C. Myocardial substitution with a stimulated skeletal muscle: first successful clinical case Lancet 1:1267; 1985.

    CAS  PubMed  Google Scholar 

  7. Chiu, R.C.J.; Walsh, G.L.; Dewar, M.L.;; et al. Implantable extra-aortic balloon assist powered by transformed fatigue-resistant skeletal muscle. J. Thorac. Cardiovasc. Surg. 94:694–701; 1987.

    CAS  PubMed  Google Scholar 

  8. Dewar, M.L.; Drinkwater, D.C.; Wittnich, C.; Chiu, R.C.J. Synchronously stimulated skeletal muscle graft for myocardial repair. J. Thorac. Cardiovasc. Surg. 87:325–331; 1984.

    CAS  PubMed  Google Scholar 

  9. Drinkwater, D.C., Jr.; Chiu, R.C.J.; Modry, D.; Wittnich, C. Cardiac assist and myocardial repair with synchronously stimulated skeletal muscle. Surg. Forum 31:271–274; 1980.

    Google Scholar 

  10. Franciosa, J.A.; Wilen, M.; Zuseke, S.; Cohn, Y.N. Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 51:831–836; 1983.

    Article  CAS  PubMed  Google Scholar 

  11. Furman, S.; Denize, A.; Escher, D.W.; Schweidel, J.B. Energy considerations for cardiac stimulation as a function of pulse durations. J. Surg. Res. 6:441–445; 1966.

    CAS  PubMed  Google Scholar 

  12. Geddes, L.A.; Badylak, S.F.; Wessale, J.L.; Janas, W.; Tacker, W.A. The use of electrically stimulated skeletal muscle to pump blood. Pace 13:344–362; 1990.

    CAS  PubMed  Google Scholar 

  13. Guyton, A.C.; Jones, C.E.; Coleman, T.G. Circulatory physiology: Cardiac output and its regulation (2nd Ed.). Philadelphia, PA: W.B. Saunders Co.; 1973.

    Google Scholar 

  14. Kantrowitz, A.; McKinnon, W.M.P. The experimental use of the diaphragm as an auxiliary myocardium. Surg. Forum 9:266–268; 1959.

    Google Scholar 

  15. Kusaba, E.; Schraut, W.; Sawantani, S.; et al. A diaphragmatic graft for augmenting left ventricular function: a feasibility study. Trans. Amer. Soc. Artif. Int. Organs 19:251–257; 1973.

    CAS  Google Scholar 

  16. Macoviak, J.A.; Stephenson, L.W.; Armenti, F.; Alavi, L.W. Electrical conditioning of in situ skeletal muscle for replacement of myocardium. J. Surg. Research 32:429–439; 1982.

    CAS  Google Scholar 

  17. Macoviak, J.A.; Stephenson, L.W.; Alavi, A.; Kelly, A.M.; Edmunds, L. Effect of electrical stimulation on diaphragmatic muscle used to enlarge right ventricle. Surgery 90:271–277; 1981.

    CAS  PubMed  Google Scholar 

  18. Macoviak, J.A.; Stephenson, L.W.; Spielman, S.; Greenspan, A.; Likoff, M., St. John-Sutton, M.; Reichek, N.; Rashkind W.J.; Edmunds, L. Replacement of ventricular myocardium with diaphragmatic skeletal muscle. J. Thorac. Cardiovasc. Surg. 81:519–527; 1981.

    CAS  PubMed  Google Scholar 

  19. Magovern, G.J.; Heckler, F.R.; Park, S.B.; Christlieb I.Y.; Magovern, Jr., G.J.; Kao, R.L.; Benckart, D.H.; Tullis, G.; Rozar, E.; Liebler, G.A.; Burkholder, S.A.; Maher, T.D. Paced latissimus dorsi used for dynamic cardiomyoplasty of left ventricular aneurysms. Ann. Thorac. Surg. 44:379–388; 1987.

    CAS  PubMed  Google Scholar 

  20. Malek, A.M.; Khalafalla, A. Nerve vs. muscle stimulation for power generation in Macas. Proc. of the Association for the Advancement of Medical Instrumentation, 22nd Annual Meeting, May 16–20, Los Angeles, California; 1987; p. 44.

  21. Mannion, J.D.; Bitto, T.; Hammond, R.; Rubinstein, N.R.; Stephenson, L.W. Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ. Res. 58:298–304; 1986.

    CAS  PubMed  Google Scholar 

  22. Mannion, J.D.; Hammond, R.; Stephenson, L.W. Hydraulic pouches of canine latissimus dorsi. J. Thorac. Cardiovasc. Surg. 91:534–544; 1986.

    CAS  PubMed  Google Scholar 

  23. Nakamura, K.; Glenn, W.W.L. Graft of the diaphragm as a functioning substitute for the myocardium. Surg. Research 4:435–439; 1964.

    Google Scholar 

  24. Petrovsky, B.V. The use of diaphragm grafts for plastic operations in thoracic surgery. J. Thorac. Cardiovasc. Surg. 41:348–355; 1961.

    CAS  PubMed  Google Scholar 

  25. Posey, J.A.; Geddes, L.A. Measurement of the modulus of elasticity of the arterial wall. Cardiovasc. Res. Bull., Baylor College of Medicine, 11:83–103; 1983.

    Google Scholar 

  26. von Recum, A.; Stule, J.P.; Hamada, O.; Baba, H.; Kantrowitz, A. Long-term stimulation of a diaphragm muscle pouch. Surg. Research 23:422–427; 1977.

    Google Scholar 

  27. Salmons, S.; Vrbova, G. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. 201:535–549; 1969.

    CAS  PubMed  Google Scholar 

  28. Salmons, S.; Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve 4:94–105; 1981.

    Article  CAS  PubMed  Google Scholar 

  29. Salmons, S.; Sreter, F.A. Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34; 1967.

    Google Scholar 

  30. Solis, E.; Kaye, M.P. The registry of the International Society for Heart Transplantation: Third official report, January–February 1986. Heart Transplant 5(1):2–5; 1986.

    CAS  Google Scholar 

  31. Spotnitz, H.M.; Merker, C.; Malm, J.R. Applied physiology of the canine rectus abdominis: forcelength curves correlated with functional characteristics, of a rectus powered “ventricle”. Potential for cardiac assistance. Trans. Amer. Soc. Artif. Int. Organs 20:747–756; 1974.

    Google Scholar 

  32. Stevens, L.; Badylak, S.F.; Janas, W.; Gray, M.; Geddes, L.A.; Voorhees, W. D. A “skeletal muscle ventricle” made from rectus abdominis muscle in the dog. J. Surg. Res. 46:84–89; 1989.

    Article  CAS  PubMed  Google Scholar 

  33. Vachon, B.R.; Kunov, H.; Zingg, W. Mechanical properties of diaphragm muscle in dogs. Med. Biol. Eng. 13:252–260; 1975.

    CAS  PubMed  Google Scholar 

  34. von Recum, A.; Stule, H.P.; Hamada, O.; Baba, H.; Kantrowitz, A. Long-term stimulation of a diaphragm muscle pouch. J. Surg. Res. 23:422–427; 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badylak, S.F., Wessale, J.E., Geddes, L.A. et al. Optimization of pulse train duration for the electrical stimulation of a skeletal muscle ventricle in the dog. Annals of Biomedical Engineering 18, 467–478 (1990). https://doi.org/10.1007/BF02364611

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364611

Keywords

Navigation