Advertisement

Helgoländer Meeresuntersuchungen

, Volume 42, Issue 1, pp 99–111 | Cite as

Osmotic and ionic regulation in shore crabsCarcinus maenas inhabiting a tidal estuary

  • A. Winkler
  • D. Siebers
  • W. Becker
Article

Abstract

Shore crabsCarcinus maenas were exposed to salinities fluctuating according to the natural tidal rhythm. To this end they were maintained in net cages positioned in the estuarine waters of the river Elbe. The cages were lifted every hour, and between 8–12 specimens were analyzed for hemolymph concentrations of Na, K, Ca, Mg, and osmolality. The results obtained were compared with the respective data measured in external brackish water. In addition, the specific activity of Na−K-ATPase in a posterior gill was determined. Hemolymph Na and Mg as well as branchial Na−K-ATPase were also determined in crabs collected in the North Sea and the Baltic. The results show that inC. maenas living in salinities fluctuating with the tides by approx. 15‰ S, Na, K and Ca were hyperregulated, and Mg was effectively hyporegulated. The concentrations of all hemolymph ions and the activity of the Na−K-ATPase were kept constant over the whole tidal cycle. In Baltic crabs, Na was effectively hyperregulated and gill Na−K-ATPase was significantly elevated by a factor of ca 2 when compared with North Sea crabs. It is suggested that long-term hyperregulation of Na in constant salinities results from an increased number of Na−K-ATPase molecules which may change by synthesis or degradation following salinity stress. Constant hemolymph levels of hyperregulated Na in crabs inhabiting fluctuating brackish water are accomplished by activation of existing Na−K-ATPase by low Na and inhibition by higher ambient concentrations.

Keywords

Salinity Stress Brackish Water Tidal Cycle Estuarine Water Ambient Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Allan, J. C. & Schwartz, A., 1969. A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides. — J. Pharmac. exp. Ther.168, 42–46.Google Scholar
  2. Davenport, J., Gruffydd, L. D. & Beaumont, A. R., 1975. An apparatus to supply water of fluctuating salinity and its use in a study of the salinity tolerances of larvae of the scallopPecten maximus L. — J. mar. biol. Ass. U. K.55, 391–409.Google Scholar
  3. Duval, M., 1925. Recherches physico-chimiques et physiologiques sur le milieu intérieur des animaux aquatiques. Modifications sous l'influence du milieu extérieur. — Annls Inst. océanogr., Monaco2, 233–407.Google Scholar
  4. Gillbricht, M., 1959. Fluchtentafeln zur Bestimmung des Salzgehalts mit Hilfe des Seewasseraräometers. — Helgoländer wiss. Meeresunters.6, 239–240.CrossRefGoogle Scholar
  5. Horiuchi, S., 1977. Characterization of gill Na, K-ATPase in the freshwater crayfishProcambarus clarki (Girard). — Comp. Biochem. Physiol.56 B, 135–138.Google Scholar
  6. Krogh, A., 1939. Osmotic regulation in aquatic animals., Cambridge Univ. Press, London, 242 pp.Google Scholar
  7. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. Protein measurement with the folin phenol reagent. — J. biol. Chem.193, 265–275.PubMedGoogle Scholar
  8. Lucu, C. & Siebers, D., 1987. Linkage of Cl fluxes with ouabain sensitive Na/K exchange throughCarcinus gill epithelia. — Comp. Biochem. Physiol.87 A, 807–811.Google Scholar
  9. Neufeld, G. J., Holliday, C. W. & Pritchard, J. B., 1980. Salinity adaptation of gill Na, K-ATPase in the blue crabCallinectes sapidus. — J. exp. Zool.221, 215–224.Google Scholar
  10. Pequeux, A., Marchal, S., Wanson, S. & Gilles, R., 1984. Kinetic characteristics and specific activity of gill (Na++K+)ATPase in the euryhaline chinese crabEriocheir sinensis during salinity acclimation. — Mar. Biol. Lett.5, 35–45.Google Scholar
  11. Quinn, D. J. & Lane, C. E., 1966. Ionic regulation and Na+−K+ stimulated ATPase activity in the land crabCardisoma guanhumi. — Comp. Biochem. Physiol.19, 533–543.PubMedGoogle Scholar
  12. Shumway, S. E., 1977. Effect of salinity fluctuation on the osmotic pressure and Na+, Ca2+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. — Mar. Biol.41, 153–177.CrossRefGoogle Scholar
  13. Siebers, D., Leweck, K., Markus, H. & Winkler, A., 1982. Sodium regulation in the shore crabCarcinus maenas as related to ambient salinity. — Mar. Biol.69, 37–43.CrossRefGoogle Scholar
  14. Siebers, D., Winkler, A., Leweck, K. & Madian, A., 1983. Regulation of sodium in the shore crabCarcinus maenas adapted to environments of constant and changing salinities. — Helgoländer Meeresunters.36, 303–312.Google Scholar
  15. Siebers, D., Winkler, A., Lucu, C., Thedens, G. & Weichart, D., 1985. Na−K-ATPase generates an active transport potential in the gills of the hyperregulationg shore crabCarcinus maenas. — Mar. Biol.87, 185–192.CrossRefGoogle Scholar
  16. Siebers, D., Lucu, C., Winkler, A., Dalla Venezia, L. & Wille, H., 1986. Active uptake of sodium in the gills of the hyperregulating shore crabCarcinus maenas. — Helgoländer Meeresunters.40, 151–160.Google Scholar
  17. Siebers, D., Lucu, C. & Winkler, A., 1987. Active influx of ions across the gills of osmoregulating shore crabsCarcinus maenas. — Zool. Beitr.30, 315–338.Google Scholar
  18. Spaargaren, D. H., 1973. A study on the adaptation of marine organisms to changing salinities with special reference to the shore crabCarcinus maenas (L.). — Comp. Biochem. Physiol.47 A, 499–512.Google Scholar
  19. Stickle, W. B., & Denoux, G. J., 1976. Effects of in situ tidal salinity fluctuations on osmotic and ionic composition of body fluids in Southeastern Alaska rocky intertidal fauna. — Mar. Biol.37, 125–135.CrossRefGoogle Scholar
  20. Towle, D. W., 1981. Role of Na++K+-ATPase in ionic regulation by marine and estuarine animals. —Mar. Biol. Lett.2, 107–121.Google Scholar
  21. Towle, D. W., 1984. Membrane-bound ATPases in arthropod ion transporting tissues. — Am. Zool.24, 177–185.Google Scholar
  22. Towle, D. W. & Kays, W. T., 1986. Basolateral localization of Na++K+-ATPase in gill epithelium of two osmoregulating crabs,Callinectes sapidus andCarcinus maenas. — J. exp. Zool.239, 311–318.CrossRefGoogle Scholar
  23. Towle, D. W., Palmer, G. E. & Harris, J. L. 1976. Role of gill Na++K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. — J. exp. Zool.196, 315–322.CrossRefGoogle Scholar
  24. Wanson, S., Pequeux, A. & Roer, R. D., 1984. Na+ regulation and (Na++K+)ATPase activity in the euryhaline fiddler crabUca minax (Le Conte). — Comp. Biochem. Physiol.79 A, 673–678.Google Scholar
  25. Winkler, A., 1986. Effects of inorganic sea water constituents on branchial Na−K-ATPase activity in the shore crabCarcinus maenas. — Mar. Biol.92, 537–544.CrossRefGoogle Scholar
  26. Winkler, A., Siebers, D. & Leweck, K., 1982. Zur Bestimmung von Natrium in Meerwasser mit ionensensitiven Elektroden. — GIT Fachz. Lab.26, 228–229.Google Scholar
  27. Zanders, J. P., 1980a. Control and dynamics of ionic balance inCarcinus maenas (L.). — Comp. Biochem. Physiol.70 A, 457–468.Google Scholar
  28. Zanders, J. P., 1980b. The control of magnesium and sulphate excretion inCarcinus maenas (L.). —Comp. Biochem. Physiol.66 A, 69–76.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1988

Authors and Affiliations

  • A. Winkler
    • 1
  • D. Siebers
    • 1
  • W. Becker
    • 2
  1. 1.Biologische Anstalt Helgoland (Zentrale)Hamburg 52FRG
  2. 2.Zoologisches Institut und Museum der Universität HamburgHamburg 13FRG

Personalised recommendations