Annals of Biomedical Engineering

, Volume 7, Issue 3–4, pp 329–343 | Cite as

Controlled release micropump for insulin administration

  • Michael V. Sefton
  • Harris M. Lusher
  • Selwyn R. Firth
  • Mikhel U. Waher


A novel controlled release micropump has been developed for the administration of insulin at both basal and postprandial delivery rates. Transport through a hydrophilic polyurethane foam (Hypol) provides the basal delivery, while repeated compression of the foam by the core of a solenoid augments the delivery as needed. The pump contains only one moving part, and is without any valves. It consumes power only during the postprandial delivery phase, which is a small fraction of the total delivery. Using both amaranth and insulin, the effects of pressure drop, foam length, and power input on the performance of the pump were evaluated. Although the degree of augmentation increased with decreasing basal delivery rate suggesting a stroke volume independent of basal rate, calculations based on a simple model showed that the stroke volume increased with increasing basal rate. The successful development of this delivery system will enable biomedical investigators to evaluate the relationship between metabolic regulation of glucose level and the genesis of diabetic sequelae and to assess the value of this pump in a new form of insulin therapy.


Foam Pressure Drop Polyurethane Stroke Volume Power Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Table of nomenclature


membrane area


feed concentration

C, Ct

concentration in downstream reservoir at time t


concentration in downstream reservoir at t=0


frequency of compression


Darcy's law permeability


membrane length or thickness


pressure difference across membrane


volumetric delivery rate


basal delivery rate


solenoid coil resistance




stroke volume


volume of solute free solvent added to downstream reseroir prior to initiation of experiment





Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albisser, A. M., W. S. Jackman, R. Ferguson, A. Bahoric, and Y. Goriya A portable precision pumping system for chronic programmed insulin infusion.Med. Progr. Technol. 5:187, 1978.Google Scholar
  2. 2.
    Albisser, A. M. and B. S. Leibel. The artificial pancreas.Clin. Endocrinol. Metab.: Diabetes. 6(2):457, 1977.Google Scholar
  3. 3.
    Albisser, A. M., B. S. Leibel, T. G. Ewart, Z. Davidovac, C. K. Botz, and W. Zingg. An artificial endocrine pancreas.Diabetes. 23:389–396, 1974.PubMedGoogle Scholar
  4. 4.
    Albisser, A. M., B. S. Leibel, T. G. Ewart, Z. Davidovac, C. K. Botz, W. Zingg, H. Schipper, and R. Gander, Clinical control of diabetes by the artificial pancreas.Diabetes. 23:397–404, 1974.PubMedGoogle Scholar
  5. 5.
    Bessot, M., C. Delacote, J. J. Lion, and F. Valentin. Apparatus for injection of liquid. U.S. Patent 3,850,348, November 26, 1974.Google Scholar
  6. 6.
    Blackshear, P. J., F. D. Dorman, P. L. Blackshear, R. L. Varco, and H. Buchwald. The design and initial testing of an implantable infusion pump.Surg. Gynecol. Obstet. 134:51, 1972.PubMedGoogle Scholar
  7. 7.
    Blackshear, P. J., T. D. Rohde, J. C. Grotting, F. D. Dorman, P. R. Perkins, R. L. Varco, and H. Buchwald. Control of blood glucose in experimental diabetes by means of a totally implantable insulin infusion device.Diabetes. 28:634–639, 1979.PubMedGoogle Scholar
  8. 8.
    Burn, J. I. and E. Gain. The chemofusor: A new apparatus for maintaining continuous intra arterial infusion chemotherapy.Br. J. Surg. 60:375, 1973.PubMedGoogle Scholar
  9. 9.
    Cahill, G. F., Jr., D. D. Etzwiler, and N. Freinkel. Blood glucose control in diabetes.Diabetes. 25:237–238, 1976.Google Scholar
  10. 10.
    Chick, W. L., A. A. Like, V. Lauris, P. M. Galletti, P. D. Richardson, P. D. Richardson, G. Panol, T. W. Mix, and C. K. Colton. A hybrid artificial pancreas.Trans. Am. Soc. Artif. Intern. Organs. 21:8–14, 1975.PubMedGoogle Scholar
  11. 11.
    Corbett, J. L., J. J. Lynch, G. R. Nicol, and J. W. U. Beeston. A versatile peristaltic pump designed for grazing lambs.Lab Prac. 458–462, 1976.Google Scholar
  12. 12.
    Crofford, O., et al. Reports to Congress of the National Commission on Diabetes. U.S. Govt. Printing Office, Public Law 93-352, 93rd. Congress, S-2830, 1974. Findings and Declaration of Purpose. Sec. 2(a) (3), 1975.Google Scholar
  13. 13.
    Deckert, T. and B. Lorup. Regulation of brittle diabetics by a pre-planned insulin infusion.Diabetologia. 12(6):573–579, December 1976.CrossRefPubMedGoogle Scholar
  14. 14.
    Ellinwood, E. H., Jr. Implanted medication dispensing device and method. U.S. Patent 3,692,027, September 19, 1972.Google Scholar
  15. 15.
    Ellinwood, E. H., Jr. Apparatus and method for implanted self powered medication dispensing having timing and evaluation means. U.S. Patent 3,923, 060, December 2, 1975.Google Scholar
  16. 16.
    Genuth, S. and P. Martin. Control of hyperglycemia in adult diabetics by pulsed insulin delivery.Diabetes. 26:571–581, 1977.PubMedGoogle Scholar
  17. 17.
    Goriya, Y., A. Bahoric, E. B. Marliss, B. Zinman and A. M. Albisser. Glycemia regulation using a programmed insulin delivery device. III. Long term studies on diabetic dogs.Diabetes. 28(6): 558–564, 1979.PubMedGoogle Scholar
  18. 18.
    Hargest, T. A., The negator pump for IV infusion.Biomater. Med. Devices Artif. Organs. 2:41–46, 1974.PubMedGoogle Scholar
  19. 19.
    Irsigler, K. and H. Kritz. Therapy with a portable insulin dosage-regulating apparatus.Diabetes. 28(3):196–203, 1979.PubMedGoogle Scholar
  20. 20.
    Kollsman, P. Automatic syringe. U.S. Patent 2,605, 765, August 5, 1952.Google Scholar
  21. 21.
    Lusher, H. M. Hydraulic permeability in hydrophilic polyurethane foams. M.A.Sc. Thesis, Department of Chemical Engineering and Applied Chemistry, University of Toronton, 1978.Google Scholar
  22. 22.
    Merrill, E. W. Method of administering drugs and capsule therefor. U.S. Patent 3,608,540, September 28, 1971.Google Scholar
  23. 23.
    Mirouze, J., J. L. Selam, T. C. Pham, E. Mendoza, and A., Orsetti. sustained insulin-induced remissions of juvenile diabetes by means of an external artificial pancreas.Diabetologia. 14: 223–227, 1978.CrossRefPubMedGoogle Scholar
  24. 24.
    Nalelz, M., J. Lewandowski, A. Werynski, and I. Zawicki, Bioengineering aspects of the artifici pancreas.Artif. Organs. 2:305–309, 1978.Google Scholar
  25. 25.
    Parsons, J. A., D. Rothwell, and J. E. Sharpe. A miniature syringe pump for continuous administration of drugs and hormones: The Mill Hill infusor.Lancet. Junary 8:77–78, 1977.Google Scholar
  26. 26.
    Pickup, J. C., M. C. White, H. Keen, J. A. Parsons and K. G. M. M. Alberti. Long term continuous subcutaneous insulin infusion in diabetics at home.Lancet. October 27:870–873, 1979.Google Scholar
  27. 27.
    Santiago, J. V., A. H. Clemens, W. L. Clarke, and D. M. Kipnis. Closed-loop and open-loop devices for blood glucose control in normal and diabetic subjects.Diabetes. 28(1):71–84, 1979.PubMedGoogle Scholar
  28. 28.
    Spencer, W. J. For diabetics: An electronic pancreas.IEEE Spectrum. June: 38–42, 1978.Google Scholar
  29. 29.
    Stolzenberg, S. J. and W. H. Linkenheier. Osmotic fluid reservoir for osmotical activated longterm continuous injector device. U.S. Patent 3,604,417, September 14, 1971.Google Scholar
  30. 30.
    Summers, G. D. Implantable drug administrator. U.S. Patent 3,527, 220, September 8, 1970.Google Scholar
  31. 31.
    Sun, A. M., W. Parisius, G. M. Healy, I. Vacek, and H. G. Macmorine. The use in diabetic rats and monkeys of artificial capillary units containing cultured islets of Langerhans.Diabetes. 26:1136–1139, 1977.PubMedGoogle Scholar
  32. 32.
    Theeuwes, F. and T. Higuchi. Osmotic dispensing device for releasing beneficial agents. U.S. Patent 3,845, 770, November 5, 1974.Google Scholar
  33. 33.
    Thomas, L. J. and S. P. Bessman. Prototype for an implantable micropump powered by piezoelectric disk benders.Trans. Am. Soc. Artif. Intern. Organs. 21:516, 1975.PubMedGoogle Scholar
  34. 34.
    Watkins, E., Jr., Chronometric infusor — An apparatus for protracted ambulatory infusion therapy.N. Engl. J. Med. 269:850–851, 1963.PubMedGoogle Scholar
  35. 35.
    Wright, J. C., R. G. Buckles, J. T. Dunn, H. M. Leeper, and S. I. Yum. An elastomeric micrometering system for the controlled administration of drugs. Paper presented at the 111 th Meeting of the Rubber Division, ACS, Chicago, Ill., May 3, 1977.Google Scholar

Copyright information

© Pergamon Press Ltd. 1979

Authors and Affiliations

  • Michael V. Sefton
    • 1
  • Harris M. Lusher
    • 1
  • Selwyn R. Firth
    • 1
  • Mikhel U. Waher
    • 1
  1. 1.Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations