Skip to main content
Log in

Chaos of the broken torus type in three-dimensional relaxation systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. F. Mishchenko and L. S. Pontryagin, “Periodic solutions of systems of differential equations that are close to discontinuous,”Dokl. Akad. Nauk SSSR,102, No. 5, 889–891 (1955).

    MathSciNet  Google Scholar 

  2. E. F. Mishchenko and N. Kh. Rozov,Differential Equations with a Small Parameter and Relaxation Oscillations [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  3. A. Yu. Kolesov, Yu. S. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “Asymptotic integration of a system in variations of a multidimensional relaxation cycle,”Diff. Uravn.,23, No. 11, 1881–1889, No. 12, 2036–2047 (1987).

    MathSciNet  Google Scholar 

  4. A. Yu. Kolesov, Yu. S. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “A relaxation system in the neighborhood of a break-off point: reduction to a regular case,”Usp. Mat. Nauk,43, No. 2, 141–142 (1988).

    MathSciNet  Google Scholar 

  5. A. Yu. Kolesov, and E. F. Mishchenko, “Asymptotics of relaxation oscillations,”Mat. Sb.,137, No. 1, 3–18 (1988).

    Google Scholar 

  6. E. F. Mishchenko and A. Yu. Kolesov, “Asymptotic theory of relaxation oscillations,”Trudy Mat. Inst. Akad. Nauk SSSR,117, 3–84 (1991).

    Google Scholar 

  7. A. Yu. Kolesov, “Specific relaxation cycles of a system of the Lotka-Volterra type,”Izv. Akad. Nauk SSSR, Ser. Mat.,55, No. 3, 515–536 (1991).

    MATH  Google Scholar 

  8. G. E. Hutchinson, “Circular causal systems in ecology,”Ann. N.Y. Acad. Sci.,50, 221–246 (1948).

    Google Scholar 

  9. A. S. Pikovsky and M. U. Rabinovich, “A simple self-excited oscillator with stochastic behavior,”Dokl. Akad. Nauk SSSR,239, No. 2, 301–304 (1978).

    Google Scholar 

  10. N. N. Chentsova, “Investigation of a model system of quasi-stochastic relaxation oscillations,”Usp. Mat. Nauk,37, No. 5, 205–206 (1982).

    MATH  MathSciNet  Google Scholar 

  11. N. N. Chentsova, “Investigation of the quasi-stochastic conditions of a self-excited oscillator on a tunnel diode,” in:Methods of the Qualitative Theory of Differential Equations [in Russian], Gorky (1983), pp. 95–118.

  12. A. Yu. Kolesov, Yu. S. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “A mixing attractor in relaxation systems,”Dokl. Akad. Nauk SSSR,309, No. 1, 38–40 (1989).

    MathSciNet  Google Scholar 

  13. A. Yu. Kolesov, Yu. S. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “On the chaos phenomena in three-dimensional relaxation systems,” Mat. Zametki,46, No. 2, 153–155 (1989).

    MathSciNet  Google Scholar 

  14. A. B. Vasil'eva and V. F. Butusov,Asymptotic Expansion of Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  15. Yu. A. Mitropol'sky and O. B. Lykova,Integral Manifolds in Nonlinear Mechanics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  16. L. P. Shil'nikov, “On a certain Poincare-Birkhoff problem,”Mat. Sb.,74, No. 3, 378–397 (1987).

    Google Scholar 

  17. P. Hartman,Ordinary Differential Equations, New York (1964).

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 17, Dinamicheskie Sistemy-2, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, A.Y., Kolesov, Y.S. & Rozov, N.K. Chaos of the broken torus type in three-dimensional relaxation systems. J Math Sci 80, 1533–1545 (1996). https://doi.org/10.1007/BF02363925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363925

Keywords

Navigation