Advertisement

Annals of Biomedical Engineering

, Volume 15, Issue 5, pp 503–519 | Cite as

Through the microcirculatory maze with machete, molecule, and minicomputer (1986 Alza lecture)

  • James B. Bassingthwaighte
Article

Abstract

This is a personal historical essay on meanderings through the jungle of the microcirculatory swamp. Because one pretends that the wandering was purposefully exploratory, a few guideposts are placed at positions where one could discern blazemarks from earlier wanderers, and the path cut a little wider along some of the routes that may be enjoyed by investigators wanting to put their blazes along more distant paths. Naturally, one starts by coming up the broad rivers, the branching into the little streams. Each of us chooses to seek a different “mother lode,” up a different stream.

Keywords

Intravascular transport Indicator dilution Organ blood flow Capillary permeability Pores membrane transporters Substrate metabolism Tracer kinetics Heterogeneity Blood-tissue exchange models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achs, M.J., and D. Garfinkel. Computer simulation of energy metabolism in anoxic perfused rat heart.Am. J. Physiol. 232:R164-R174, 1977.PubMedGoogle Scholar
  2. 2.
    Achs, M.J., and D. Garfinkel. Computer simulation of rat heart metabolism after adding glucose to the perfusate.Am. J. Physiol. 232:R175-R184, 1977.PubMedGoogle Scholar
  3. 3.
    Bassingthwaighte, J.B., A.W.T. Edwards, and E.H. Wood. Areas of dye-dilution curves sampled simultaneously from central and peripheral sites.J. Appl. Physiol. 17:91–98, 1962.PubMedGoogle Scholar
  4. 4.
    Bassingthwaighte, J.B., and H.R. Warner. Indicator dispersion in the circulation.Am. Heart J. 69:838–841, 1965.CrossRefPubMedGoogle Scholar
  5. 5.
    Bassingthwaighte, J.B., F.H. Ackerman, and E.H. Wood. Applications of the lagged normal density curve as a model for arterial dilution curves.Circ. Res. 18:398–415, 1966.PubMedGoogle Scholar
  6. 6.
    Bassingthwaighte, J.B., H.R. Warner, and E.H. Wood. Analog computer analysis of dispersion of indicator in the circulation.Med. Res. Eng. 5:30–38, 1966.PubMedGoogle Scholar
  7. 7.
    Bassingthwaighte, J.B. Plasma indicator dispersion in arteries of the human leg.Circ. Res. 19:332–346, 1966.PubMedGoogle Scholar
  8. 8.
    Bassingthwaighte, J.B. Circulatory transport and the convolution integral.Mayo Clin. Proc. 42:137–154, 1967.PubMedGoogle Scholar
  9. 9.
    Bassingthwaighte, J.B. and F.H. Ackerman. Mathematical linearity of circulatory transport.J. Appl. Physiol. 22:879–888, 1967.PubMedGoogle Scholar
  10. 10.
    Bassingthwaighte, J.B., B. Guller, and T. Yipintsoi. A model for capillary-tissue exchange in the myocardium.Fed. Proc. 27:229, 1968. (abstract)Google Scholar
  11. 11.
    Bassingthwaighte, J.B., T. Strandell, and D.E. Donald. Estimation of coronary blood flow by washout of diffusible indicators.Circ. Res. 23:259–278, 1968.PubMedGoogle Scholar
  12. 12.
    Bassingthwaighte, J.B., T.J. Knopp, and J.B. Hazelrig. A concurrent flow model for capillary-tissue exchanges. In:Capillary Permeability (Alfred Benzon Symp. II), C. Crone, and N.A. Lassen, eds., Copenhagen, Munksgaard, 1970, pp. 60–80.Google Scholar
  13. 13.
    Bassingthwaighte, J.B., W.A. Dobbs, and T. Yipintsoi. Heterogeneity of myocardial blood flow. In:Myocardial Blood Flow in Man: Methods and Significance in Coronary Disease, A. Maseri, ed. Torino, Italy, Minerva Medica, 1972, pp. 197–205.Google Scholar
  14. 14.
    Bassingthwaighte, J.B., T. Yipintsoi, and R.B. Harvey. Microvasculature of the dog left ventricular myocardium.Microvasc. Res. 7:229–249, 1974.CrossRefPubMedGoogle Scholar
  15. 15.
    Bassingthwaighte, J.B. A concurrent flow model for extraction during transcapillary passage.Circ. Res. 35:483–503, 1974.PubMedGoogle Scholar
  16. 16.
    Bassingthwaighte, J.B., M. Chaloupka, and A.A. Goldstein. Optimization using sensitivity functions for fitting models to data.Mathematics and Computers in Simulation 24:502–506, 1982.CrossRefGoogle Scholar
  17. 17.
    Bassingthwaighte, J.B., T. Yipintsoi, and T.J. Knopp. Diffusional arteriovenous shunting in the heart.Microvasc. Res. 28:233–253, 1984.CrossRefPubMedGoogle Scholar
  18. 18.
    Bassingthwaighte, J.B., and C.A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In:Handbook of Physiology, Sect. 2, The Cardiovascular System, Vol. IV, Microcirculation, Chapt. 13, E.M. Renkin, and C.C. Michel, eds., Bethesda, MD, American Physiological Society, 1984, pp. 549–626.Google Scholar
  19. 19.
    Bassingthwaighte, J.B., F.P. Chinard, C. Crone, C.A. Goresky, N.A. Lassen, R.S. Reneman, and K.L. Zierler. Terminology for mass transport and exchange.Am. J. Physiol. 250 (Heart. Circ. Physiol. 19):H539-H545, 1986.PubMedGoogle Scholar
  20. 20.
    Bassingthwaighte, J.B., L. Noodleman, R.T. Eakin, and R.B. King. Integrated phenomenology of transport, permeation, and metabolic reactions in the heart. In:Electromechanical Activation, Metabolism and Perfusion of the Heart—Simulation and Experimental Models, S. Sideman, and R. Beyar, eds. Dordrecht, Martinus Nijhoff, 1987, pp. xx1-x30. (accepted)Google Scholar
  21. 21.
    Bassingthwaighte, J.B., M.A. Malone, T.C. Moffett, R.B. King, S.E. Little, J.M. Link, and K.A. Krohn. Validity of microsphere depositions for regional myocardial flows.Am. J. Physiol. 252 (Heart Circ. Physiol. 21):Hxx1-Hx23, 1987. (in press).Google Scholar
  22. 22.
    Bassingthwaighte, J.B., I.S. Chan, A.A. Goldstein, and I.B. Russak. GGOPT, an unconstrained nonlinear optimizer.SIAM J. Sci. Stat. Comput. 1987. (in press).Google Scholar
  23. 23.
    Bohr, C. Uber die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion.Skand. Arch. Physiol. 22:221–280, 1909.Google Scholar
  24. 24.
    Bronikowski, T.A., J.H. Linehan, and C.A. Dawson. A mathematical analysis of the influence of perfusion heterogeneity on indicator extraction.Math. Biosciences 52:27–51, 1980.Google Scholar
  25. 25.
    Chan, I.S., A.A. Goldstein, and J.B. Bassingthwaighte. SENSOP: A derivative-free solver for nonlinear least squares with sensitivity scaling.Technometrics, 1987. (under review).Google Scholar
  26. 26.
    Chinard, F.P., G.J. Vosburgh, and T. Enns. Transcapillary exchange of water and of other substances in certain organs of the dog.J. Appl. Physiol. 183:221–234, 1955.Google Scholar
  27. 27.
    Crone, C. The permeability of capillaries in various organs as determined by the use of the ‘indicator diffusion’ method.Acta Physiol. scand. 58:292–305, 1963.PubMedGoogle Scholar
  28. 28.
    Crone, C., and N.A. Lassen, eds. Capillary permeability: The transfer of molecules and ions between capillary blood and tissues. Copenhagen. Munksgaard, 1970.Google Scholar
  29. 29.
    Doutheil, U., and R. Rhode. Duchblutungsbestimmung in oberflachlichen Myokardschichten und im gesamten Ventrikelmyokard mit Hilfe der Krypton-85-Auswaschtechnik.Pflügers Arch. 290, 258–263, 1966.CrossRefGoogle Scholar
  30. 30.
    Edwards, A.W.T., J.B. Bassingthwaighte, W.F. Sutterer, and E.H. Wood. Blood level of indocyanine green in the dog during multiple dye curves and its effect on instrumental calibration.Proc. S. M. Mayo Clin. 35, 747–751, 1960.Google Scholar
  31. 31.
    Edwards, A.W.T., T. Velasquez, and L.E. Farhi. Determination of alveolar capillary temperature.J. Appl. Physiol. 18:107–113, 1963.Google Scholar
  32. 32.
    Edwards, A.W.T., J. Issacson, W.F. Sutterer, J.B. Bassingthwaighte, and E.H. Wood. Indocyanine green densitometry in flowing blood compensated for background dye.J. Appl. Physiol. 18:1294–1304, 1963.PubMedGoogle Scholar
  33. 33.
    Eng, C., S. Cho, S.M. Factor, E.H. Sonnenblick, and E.S. Kirk. Myocardial micronecrosis produced by microsphere embolization: Role of an α-adrenergic tonic influence on the coronary microcirculation.Circ. Res. 54:74–82, 1984.PubMedGoogle Scholar
  34. 34.
    Farhi, L.E., A.W.T. Edwards, and T. Homma. Determination of dissolved N2 in blood by gas chromatography and (a-A)N2 difference.J. Appl. Physiol. 18:97–106, 1963.PubMedGoogle Scholar
  35. 35.
    Gonzalez-Fernandez, J.M. Theory of the measurement of the dispersion of an indicator in indicatordilution studies.Circ. Res. 10:409–428, 1962.PubMedGoogle Scholar
  36. 36.
    Goresky, C.A.. A linear method for determining liver sinnusoidal and extravascular volumes.Am. J. Physiol. 204:626–640, 1963.PubMedGoogle Scholar
  37. 37.
    Goresky, C.A., W.H. Ziegler, and G.G. Bach. Capillary exchange modeling: Barrier-limited and flow-limited distribution.Circ. Res. 27:739–764, 1970.PubMedGoogle Scholar
  38. 38.
    Goresky, C.A., G.G. Bach, and B.E. Nadeau. Red cell carriage of label: Its limiting effect on the exchange of materials in the liver.Circ. Res. 36:328–351, 1975.PubMedGoogle Scholar
  39. 39.
    Gorman, M.W., J.B. Bassingthwaighte, R.A. Olsson, and H.V. Sparks. Endothelial cell uptake of adenosine in canine skeletal muscle.Am. J. Physiol. 250 (Heart. Circ. Physiol. 19):H482-H489, 1986.PubMedGoogle Scholar
  40. 40.
    Guller, B., T. Yipintsoi, A.L. Orvis, and J.B. Bassingthwaighte. Myocardial sodium extraction at varied coronary flows in the dog: Estimation of capillary permeability by residue and outflow detection.Circ. Res. 37:359–378, 1975.PubMedGoogle Scholar
  41. 41.
    Harris, T.R., and E.V. Newman. An analysis of mathematical models of circulatory indicator-dilution curves.J. Appl. Physiol. 28:840–850, 1970.PubMedGoogle Scholar
  42. 42.
    Harvey, R.B., J.B. Bassingthwaighte, and R.L. Heppner. Regulation of plasma creatinine concentration by use of a servo control system.Clin. Chem. 14:944–959, 1968.PubMedGoogle Scholar
  43. 43.
    Honig, C.R., and C.L. Odoroff. Calculated dispersion of capillary transit times: Significance for oxygen exchange.Am. J. Physiol. 240(Heart. Circ. Physiol.9):H199-H208, 1981.PubMedGoogle Scholar
  44. 44.
    Johnson, J.A., and T.A. Wilson. A model for capillary exchange.Am. J. Physiol.210:1299–1303, 1966.PubMedGoogle Scholar
  45. 45.
    King, R., J. Bassingthwaighte, D. DeWitt, M. Gorman, R. Wanler, and H. Sparks. A model of adenosine transport and metabolism in the myocardium.Proc. Internat. Union Physiol. Sci. 16:226 1986. (abstract)Google Scholar
  46. 46.
    King, R.B., J.B. Bassingthwaighte, J.R.S. Hales, and L.B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons.Circ. Res. 57:285–295, 1985.PubMedGoogle Scholar
  47. 47.
    King, R.B., and J.B. Bassingthwaighte. Spatial variation in regional myocardial flows is not reduced by temporal fluctuations.Am. J. Physiol. 252 (Heart. Circ. Physiol.2):Hxx1-Hx16, 1987, (submitted January 1987)Google Scholar
  48. 48.
    Kirk, E.S., and C.R. Honig. Nonuniform distribution of blood flow and gradients of oxygen tension within the heart.Am. J. Physiol. 207:661–668, 1964.PubMedGoogle Scholar
  49. 49.
    Knopp, T.J., W.A. Dobbs, J.F. Greenleaf, and J.B. Bassingthwaighte. Transcoronary intravascular transport functions obtained via a stable deconvolution-technique.Am. Biomed Eng. 4:44–59, 1976.Google Scholar
  50. 50.
    Kohn, M.C., and D. Garfinkel. Computer simulation of ischemic rat heart purine metabolism: I. Model construction.Am. J. Physiol. 232 (Heart. Circ. Physiol. 1):H386-H393, 1977.PubMedGoogle Scholar
  51. 51.
    Kohn, M.C., and D. Garfinkel. Computer simulation of ischemic rat heart purine metabolism: II. Model behavior.Am. J. Physiol. 232 (Heart. Circ. Physiol. 1):H394-H399, 1977.PubMedGoogle Scholar
  52. 52.
    Kuikka, J., M. Levin, and J.B. Bassingthwaighte. Multiple tracer dilution estimates of D- and 2-deoxy-D glucose uptake by the heart.Am. J. Physiol. 250 (Heart. Circ. Physiol. 19):H29-H42, 1986.PubMedGoogle Scholar
  53. 53.
    Lerch, R.. Effect of impaired fatty acid oxidation on myocardial kinetics of11C- and123I-labelled fatty acids.Eur. J. Nucl. Med. 12:S36-S38, 1986.Google Scholar
  54. 54.
    Levin, M., J. Kuikka, and J.B. Bassingthwaighte. Sensitivity analysis in optimization of timedistributed parameters for a coronary circulation model.Med. Prog. Technol. 7:119–124, 1980.PubMedGoogle Scholar
  55. 55.
    Lightfoot, E.N., J.B. Bassingthwaighte, and E.F. Grabowski. Hydrodynamic models for diffusion in microporous membranes.Ann. Biomed. Eng. 4:78–90, 1976.CrossRefPubMedGoogle Scholar
  56. 56.
    Little, S.E., J.M. Link, K.A. Krohn, and J.B. Bassingthwaighte. Myocardial extraction and retention of 2-iododesmethylimipramine: a novel flow marker.Am. J. Physiol. 250(Heart. Circ. Physiol. 19):H1060-H1070, 1986.PubMedGoogle Scholar
  57. 57.
    McDonald, D.A.Blood Flow in Arteries. London, Arnold, 1960.Google Scholar
  58. 58.
    Martin, P., and D.L. Yudilevich. A theory for the quantification of transcapillary exchange by tracerdilution curves.Am. J. Physiol. 207:162–168, 1964.PubMedGoogle Scholar
  59. 59.
    Maseri, A.P., S. Caldini, S. Permutt, and K.L. Zierler. Frequency function of transit times through dog pulmonary circulation.Circ. Res. 26:527–543, 1970.PubMedGoogle Scholar
  60. 60.
    Meier, P., and K.L. Zierler. On the theory of the indicator-dilution method for measurement of blood flow and volume.J. Appl. Physiol. 6:731–744, 1954.PubMedGoogle Scholar
  61. 61.
    Morgan, H.E., D.M. Regen, and C.R. Park. Identification of a mobile carrier-mediated sugar transport system in muscle.J. Biol. Chem. 239:369–374, 1964.PubMedGoogle Scholar
  62. 62.
    Neufeld, G.R. Computation of transit time distributions using sampled data Laplace transforms.J. Appl. Physiol. 31:148–153, 1971.PubMedGoogle Scholar
  63. 63.
    Palsson, B.O., and E.N. Lightfoot. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics.J. Theor. Biol. 111:273–302, 1984.PubMedGoogle Scholar
  64. 64.
    Palsson, B.O., R. Jamier, and E.N. Lightfoot. Mathematical modeling of dynamics and control in metabolic networks. II. Simple dimetric enzymes.J. Theor. Biol. 111:303–321, 1984.PubMedGoogle Scholar
  65. 65.
    Palsson, B.O., H. Palsson, and E.N. Lightfoot. Mathematical modelling of dynamics and control of metabolic networks. III. Linear reaction sequences.J. Theor. Biol. 113:231–259, 1985.PubMedGoogle Scholar
  66. 66.
    Palsson, B.O., and E.N. Lightfoot. Mathematical modelling of dynamics and control in metabolic networks. IV. Local stability analysis of single biochemical control loops.J. Theor. Biol. 113:261–277, 1985.PubMedGoogle Scholar
  67. 67.
    Palsson, B.O., and E.N. Lightfoot. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops.J. Theor. Biol. 113:279–298, 1985.PubMedGoogle Scholar
  68. 68.
    Plagemann, P.G., and R.M. Wohlhueter. Nucleoside transport in human erythrocytes.J. Biol. Chem. 257:12069–12074, 1982.PubMedGoogle Scholar
  69. 69.
    Renkin, E.M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles.Am. J. Physiol. 197:1205–1210, 1959.PubMedGoogle Scholar
  70. 70.
    Rose, C.P., and C.A. Goresky. Vasomotor control of capillary transmit time heterogeneity in the canine coronary circulation.Circ. Res. 39:541–554, 1976.PubMedGoogle Scholar
  71. 71.
    Rose, C.P., and C.A. Goresky. Constraints on the uptake of labeled palmitate by the heart: The barriers at the capillary and sarcolemmal surfaces and the control of intracellular sequestration.Circ. Res. 41:534–545, 1977.PubMedGoogle Scholar
  72. 72.
    Rose, C.P., C.A. Goresky, and G.G. Bach. The capillary and sarcolemmal barriers in the heart: An exploration of labeled water permeability.Circ. Res. 41:515–533, 1977.PubMedGoogle Scholar
  73. 73.
    Rose, C.P., and C.A. Goresky. Limitations of tracer oxygen uptake in the crime coronary circulation.Circ. Res. 56:57–71, 1985.PubMedGoogle Scholar
  74. 74.
    Roselli, R.J., and T.R. Harris. A four phase model of capillary tracer exchange.Ann. Biomed. Eng. 7:203–238, 1979.PubMedGoogle Scholar
  75. 75.
    Roselli, R.J., and T.R. Harris. The effects of red cell and tissue exchange on the evaluation of capillary permeability from multiple indicator data.Am. Biomed. Eng. 7:239–282, 1979.Google Scholar
  76. 76.
    Roselli, R.J., T.R. Harris, and K.L. Brigham. Effects of red cell exchange on calculated sheep lung vascular permeability to14C-urea and14C-thiourea.Respir. Physiol. 49:11–21, 1982.CrossRefPubMedGoogle Scholar
  77. 77.
    Rowlett, R.D., and T.R. Harris. A comparative study of organs models and numerical techniques for the evaluation of capillary permeability from multiple-indicator data.Math. Biosci. 29:273–298, 1976.CrossRefGoogle Scholar
  78. 78.
    Safford, R.E., and J.B. Bassingthwaighte. Calcium diffusion in transient and steady states in muscle.Biophys. J. 20:113–136, 1977.PubMedGoogle Scholar
  79. 79.
    Safford, R.E., E.A. Bassingthwaighte, and J.B. Bassingthwaighte. Diffusion of water in cat ventricular myocardium.J. Gen. Physiol. 72:513–538, 1978.CrossRefPubMedGoogle Scholar
  80. 80.
    Sangren, W.C., and C.W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment.Bull. Math. Biophys. 15:387–394, 1953.Google Scholar
  81. 81.
    Stow, R.W., and P.S. Hetzel. An empirical formula for indicator-dilution curves as obtained in human beings.J. Appl. Physiol. 7:161–167, 1954.PubMedGoogle Scholar
  82. 82.
    Thompson, H.K., C.F. Starmer, R.E. Whalen, and H.D. McIntosh. Indicator transit time considered as a gamma variate.Circ. Res. 14:502–515, 1964.PubMedGoogle Scholar
  83. 83.
    Weiss, H.R. Role ofbeta-1, adrenergic receptors in the control of the heterogeneity of O2 saturation in small myocardial veins.J. Pharmacol. Exp. Ther. 277:333–339, 1983.Google Scholar
  84. 84.
    Yipintsoi, T., W.A. Dobbs, Jr., P.D. Scanlon, T.J. Knopp, and J.B. Bassingthwaighte. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts.Circ. Res. 33:573–587, 1973.PubMedGoogle Scholar
  85. 85.
    Zierler, K.L. Circulation times and theory of indicator-dilution methods for determining blood flow and volume. In:Handbook of Physiology, Sec. 2: Circulation. Washington, D.C., American Physiological Society, 1962, pp. 585–615.Google Scholar
  86. 86.
    Zierler, K.L. Theoretical basis of indicator-dilution methods for measuring flow and volume.Circ. Res. 10:393–407, 1962.Google Scholar

Copyright information

© Pergamon Journals Ltd 1987

Authors and Affiliations

  • James B. Bassingthwaighte
    • 1
  1. 1.Center for Bioengineering, WD-12University of WashingtonSeattle

Personalised recommendations