Annals of Biomedical Engineering

, Volume 8, Issue 4–6, pp 391–404 | Cite as

The development of recognition of component significance in closed-loop cardiovascular control

  • Abraham Noordergraaf
  • Julius Melbin
Cardiovascular Control


The development of physical or mathematical models offers potentially powerful instruments for understanding interactive mechanics of the circulatory system. Coupled with computer technology, the resultant scientific armamentarium held promise of rapid solutions to complex problems. Expectations have not been fulfilled for several reasons, which are discussed. Lack of information, necessary to achieve realistic model responses, often constrains their applicability. Since complete information, required for all components, may not be available, the importance of representing specific task-significant components is explored. The successful use of this approach is illustrated.


Mathematical Model Circulatory System Complex Problem Component Significance Model Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baan, J. Model of the left ventricle based on an electromagnetic contractile analog of cardiac muscle. In:Cardiovascular System Dynamics, edited by J. Baanet al. Cambridge, MA: MIT Press, 1978, p. 85.Google Scholar
  2. 2.
    Beneken, J.E.W. A mathematical approach to cardiovascular function: The uncontrolled human system. Ph.D. dissertation. University of Utrecht, Utrecht, 1965.Google Scholar
  3. 3.
    Beneken, J.E.W. and B. de Wit. A physical approach to hemodynamic aspects of the human cardiovascular system. In:Physical Basis of Circulatory Transport, edited by E. B. Reeveet al. Philadelphia, PA: Saunders, 1967, p. 1.Google Scholar
  4. 4.
    Brower, R.W. and A. Noordergraaf. Theory of steady flow in collapsible tubes and veins. In:Cardiovascular System Dynamics, edited by J. Baanet al. Cambridge, MA: MIT Press, 1978. p. 256.Google Scholar
  5. 5.
    Buoncristiani, J.F., A.J. Liedtke, R.M. Strong, and C.W. Urschel. Parameter estimates of a left ventricular model during ejection.IEEE Trans. Biomed. Eng. 20:110–120, 1973.PubMedGoogle Scholar
  6. 6.
    Busse, R., R.D. Bauer, A. Schabert, Y. Summa, and E. Wetterer. An improved method for the determination of the pulse transmission characteristics of arteries in vivo.Circ. Res. 44:630–636, 1979.PubMedGoogle Scholar
  7. 7.
    Conrad, W.A. Pressure-flow relationships in collapsible tubes.IEEE Trans. Biomed. Eng. 16: 284–295, 1969.PubMedGoogle Scholar
  8. 8.
    Defares, J.G., H.H. Hara, J.J. Osborn, and J. McLeod. Theoretical analysis and computer simulation of the circulation with special reference to the Starling properties of the ventricle. In:Circulatory Analog Computers, edited by A. Noordergraafet al. Amsterdam: North-Holland Publishing Co., 1963, p. 91.Google Scholar
  9. 9.
    Frank, O. Die grundform des arteriellen pulses.Z. Biol. 37:483–490, 1899.Google Scholar
  10. 10.
    Grodins, F.S. Integrative cardiovascular physiology: A mathematical synthesis of cardiac and blood vessel hemodynamics.Q. Rev. Biol. 34:93–104, 1959.CrossRefPubMedGoogle Scholar
  11. 11.
    Guyton, A.C.Circulatory Physiology: Cardiac Output and Its Regulation, Philadelphia, PA: Saunders, 1963.Google Scholar
  12. 12.
    Guyton, A.C., T.G. Coleman, and H.J. Granger. Circulation: Overall regulation.Ann. Rev. Physiol. 34:13–28, 1972.Google Scholar
  13. 13.
    Hill, W.S., J.O. Polleri, and A.L. Matteo. Essay on a hydrodynamic analysis of the blood circulation. University of Montevideo, 1958.Google Scholar
  14. 14.
    Hillestad, R.J. Hybrid computer studies of the cardiovascular systemic circuit. Master's thesis. University of Wisconsin, 1966.Google Scholar
  15. 15.
    Hunter, W.C., J.S. Janicki, K.T. Weber, and A. Noordergraaf. Flow-pulse response: A new method for the characterization of ventricular mechanics.Am. J. Physiol. 237:H282-H292, 1979.PubMedGoogle Scholar
  16. 16.
    Hunter, W.C. and A. Noordergraaf. Simulation of the cardiovascular system: A necessary but fallible technique. In:Spanning the Applications of Simulation, edited by P. Brock, Simulation Council Proc., Vol, 4, 1978, p. 91.Google Scholar
  17. 17.
    Iwazumi, T. Molecular mechanism of muscle contraction: Another view. In:Cardiovascular System Dynamics, edited by. J. Baanet al. Cambridge, MA: MIT Press, 1978.Google Scholar
  18. 18.
    Karreman, G., and C.N. Weygandt. Theoretical control aspects of the circulation. In:Cardiovascular System Dynamics, edited by J. Baanet al. Cambridge, MA: MIT Press, 1978, p. 492.Google Scholar
  19. 19.
    Li, J.K.-J., J. Melbin, and A. Noordergraaf. Pulse transmission to vascular beds. Abstract. Proceedings from Annual Conference on Engineering, Medicine and Biology, 1980.Google Scholar
  20. 20.
    McMichael, J.Pharmacology of the Failing Human Heart. Springfield, IL: Thomas, 1950.Google Scholar
  21. 21.
    McNally, R.T. and K. Engelman. Controlled reduction of blood pressure through an automated drug infusion system. In:Cardiovascular System Dynamics, edited by J. Baanet al. Cambridge, MA: MIT Press, 1978, p. 458.Google Scholar
  22. 22.
    Melbin, J. and R. Gopalakrishnan. Interaction of vascular compliance with altering vascular taper. Abstract. Proceedings from American Physiological Society and Biomedical Engineering Society, 1976.Google Scholar
  23. 23.
    Melbin, J., R. Gopalakrishnan, and A. Noordergraaf. Flow and distortion phenomena in vessel models for the pulmonary trunk. In:Cardiovascular System Dynamics, edited by J. Baanet al. Cambridge, MA: MIT Press, 1978, p. 309.Google Scholar
  24. 24.
    Milnor, W.R. and C.D. Bertram. The relation between arterial viscoelasticity and wave propagation in the canine femoral arteryin vivo.Circ. Res. 43:870–879, 1978.PubMedGoogle Scholar
  25. 25.
    Noordergraaf, A. Hemodynamics. In:Biological Engineering, edited by H.P. Schwan. New York: McGraw-Hill, 1969, p. 391.Google Scholar
  26. 26.
    Noordergraaf, A. The computer in cardiovascular system analysis.Hart Bull. 3:27–31, 1972.Google Scholar
  27. 27.
    Noordergraaf, A.Circulatory System Dynamics. New York: Academic Press, 1978.Google Scholar
  28. 28.
    Noordergraaf, A., J.K.-J. Li, and K.B. Campbell. Mammalian hemodynamics: A new similarity principle.J. Theor. Biol. 79:485–487, 1979.CrossRefPubMedGoogle Scholar
  29. 29.
    Noordergraaf, A. and J. Melbin. Ventricular afterload: A succinct yet comprehensive definition.Am. Heart J. 95:545–547, 1978.CrossRefPubMedGoogle Scholar
  30. 30.
    Pollack, G.H., R.V. Reddy, and A. Noordergraaf: Input impedance, wave travel and reflections in the human pulmonary arterial tree: Studies using an electrical analog.IEEE Trans. Biomed. Eng. 15:151–164, 1968.PubMedGoogle Scholar
  31. 31.
    Robinson, D.A. Ventricular dynamics and the cardiac representation problem. In:Circulatory Analog Computers, edited by A. Noordergraafet al. Amsterdam: North-Holland Publishing Co., 1963, p. 56.Google Scholar
  32. 32.
    Taylor, M.G. An approach to an analysis of the arterial pulse wave.Phys. Med. Biol. 1:258–269, 1957.PubMedGoogle Scholar
  33. 33.
    Van Harreveld, A. and O.W. Shadle. On hemodynamics.Arch. Int. Physiol. 49:165–169, 1951.Google Scholar
  34. 34.
    Warner, H.R. The use of an analog computer for analysis of control mechanisms in the circulation.Proc. IRE 47:1913–1927, 1959.Google Scholar
  35. 35.
    Weber, E.H. Ueber die anwendung der wellenlehre auf die lehre vom kreislaufe des blutes und ins besondere auf die pulslehre. Ber. Verh. Kgl. Saechs. Ges. Wiss.,Math. Phys. Kl., 1850.Google Scholar

Copyright information

© Pergamon Press Ltd. 1981

Authors and Affiliations

  • Abraham Noordergraaf
    • 1
    • 2
  • Julius Melbin
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphia
  2. 2.Department of Animal BiologyUniversity of PennsylvaniaPhiladelphia

Personalised recommendations