Skip to main content
Log in

Closed-loop control in prosthetic systems: Historical perspective

  • Sensory Neural Prostheses
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The control of artificial limbs and other restorative systems is discussed in terms of closed-loop control and sensory feedback. Feedback modalities are classified in three categories:

  1. (1)

    Supplemental Sensory Feedback

  2. (2)

    Artificial Reflexes

  3. (3)

    Control Interface Feedback.

Historical attempts to provide sensory feedback in prostheses are discussed and put in the context of more modern efforts in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bach-y-Rita, P., C. C. Collins, F. Saunders, B. White, and L. Scadden. Vision substitution by tactile image projection.Nature 221: 963–964, 1969.

    CAS  PubMed  Google Scholar 

  2. Battye, C. K., A. Nightingale, and J. Willis. The use of myoelectric currents in the operation of prostheses.J. Bone Jt. Surg. 37-B: 506–510, 1955.

    CAS  Google Scholar 

  3. Beeker, T. W., J. During, and A. Den Hertog. Artificial touch in a hand prosthesis. 5: 47–49, 1967.

    CAS  Google Scholar 

  4. Bell, Sir Charles. The hand, its mechanism and vital endowments as evincing design.Bridgewater Treatise IV, 1832.

  5. Bottomley, A. H. Myoelectric control of powered prostheses.J. Bone Jt. Surg. 47B, No. 3: 411–415, 1965.

    Google Scholar 

  6. Clippinger, F. W., R. Avery, B. Titus. A sensory feedback system for an upper limb amputation prosthesis.Bull. Prosthet. Res. 10–22: 247–258, 1974.

    Google Scholar 

  7. Collins, C. C. and J. Madey. Tactile sensory replacement. Proceedings of the San Diego Biomedical Symposium 13: 15–26, 1974.

    Google Scholar 

  8. Conzelman, J. E., H. B. Ellis, and C. W. O'Brien. U.S. Patent 2,65,,545, Prosthetic Device Sensory Attachment, Oct. 27, 1953.

  9. Doubler, J. A. Sensory feedback for a myoelectric hand prosthesis. M.S. thesis, electrical engineering, Northwestern University, 1976.

  10. Geldard, F. A. Cutaneous channels of communication. In:Sensory Communication, edited by W. Rosenblith. New York: Wiley and Sons, 1961, pp. 73–87.

    Google Scholar 

  11. Goldman I. A. U.S. Patent 2,567,066, Robot Controlled Limb, Sept. 4, 1951.

  12. Herberts, P., and L. Körner. Ideas on sensory feedback in hand prostheses.Prosthet. Orthot. Int. 3: 157–162, 1979.

    CAS  PubMed  Google Scholar 

  13. Hill, J. W. Touch feedback and automatic control, Proc 4th Int. Symp. on Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1972, pp. 223–242.

  14. Jacobsen, S. C., R. B. Jerard, and D. Knutti. Development and Control of the Utah Arm. Proc. 5th Int. Symp. on Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1975, pp 405–414.

  15. Kato, I., S. Yamakawa, K. Ichikawa, and M. Sano. Multifunctional myoelectric hand prosthesis with pressure sensory feedback system: Waseda hand 4P. roc. 3rd Int. Symp. on External Control of Human Extremities, ETAN, Yugoslavia, Dubrovnik, 1975, pp. 155–170.

  16. Kawamura, Z. and O. Sueda. Sensory feedback device for the artificial arm. Paper presented at the Fourth Pan Pacific Rehabilitation Conference, Osaka, Japan, 1969.

  17. Klasson, B. Three-way valves for biomechanical, proportional three-state control. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and, I. Petersen. Springfield, Ill.: Thomas, 1974, pp. 107–117.

    Google Scholar 

  18. Klopsteg, P. E., and P. D. Wilson, editors.Human Limbs and Their Substitutes. New York: MeGraw-Hill, 1954, pp. 48–77.

    Google Scholar 

  19. Kobrinski, A. Y. Bioelectric control of prosthetic devices.Herald of the Academy of Science-USSR (Vestn. Akad. Nauk SSSR) 30: 58–61, 1960.

    Google Scholar 

  20. Lambert, T. H., and M. J. Hall. Design and control of powered artificial arms. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs. Proc. Inst. Mech. Eng., Part 3J. 183: 1–5, 1969.

  21. Lucaccini, L. F., P. K. Kaiser, and J. Lyman. The French electric hand: Some observations and conclusions.Bull. Prosthet. Res. 1966, pp. 30–51.

  22. Mann, R. W. Prostheses control and feedback via noninvasive skin and invasive peripheral nerve techniques. In:Neural Organization and Its Relevance to Prosthetics, edited by W. S. Fields. New York and London: Intercontinental Medical Books Corp., 1973, pp. 177–195.

    Google Scholar 

  23. Mann, R. W. Force and position proprioception for prostheses. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 201–219.

    Google Scholar 

  24. Martin, F.Artificial Limbs. Geneva: International Labour Office, Studies and Reports, Series E, No. 5, 1925.

    Google Scholar 

  25. Pfeiffer, E. A., C. M. Rhode, and S. I. Fabric. An experimental device to provide substitute tactile sensation from the anesthetic hand.Med. Eng. 7: 191–199, 1969.

    CAS  Google Scholar 

  26. Prior, R. E., P. A. Case, C. M. Scott, and J. Lyman. Supplemental sensory feedback for the VA/NA myoelectric hand: Background and feasibility.Bull. Prosthet. Res. 10–26: 170–190, 1976.

    Google Scholar 

  27. Prior, R. E. and J. Lyman. Electrocutaneous feedback for artificial limbs.Bull. Prosthet. Res. 10–24: 3–37, 1975.

    PubMed  Google Scholar 

  28. Rakić, M. The Belgrade hand prosthesis. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs. Proc. Instn. Mech. Engrs Part 3J, 183, 1969, pp. 60–67.

  29. Reiter, R. Eine neue electrokunsthand.Grenzgeb. Med. 4: 133–135, 1948.

    Google Scholar 

  30. Reswick, J., V. Mooney, A. Schwartz, D. McNeal, N. Su, G. Bekey, B. Bowman, R. Snelson, G. Irons, P. Schmid, and C. Sperry. Sensory feedback prosthesis using intraneural electrodes. Proc. 5th Int. Symp. on External Control of Human Extremities. ETAN, Yugoslavia, Dubrovnil, 1975, pp. 9–24.

  31. Ring, N. D., and D. B. Welbourn. A self-adaptive gripping device: Its design and performance. In:Basic Problems of Prehension, Movement and Control of Artificial Limbs, Proc. Inst. Mech. Eng. Part 3J. 183: 45–49, 1969.

  32. Rohland, T. A. and E. C. Davey. Sensory feedback systems for myoelectrically controlled hand prostheses. Proc. of the 1974 Conf. on Engineering Devices in Rehabilitation. Boston, 1974, pp. 65–68.

  33. Rosset, F. German Patent 301108, Artificial Limbs, Dec. 17, 1916.

  34. Salisbury, L. L., and A. B. Colman. A mechanical hand with automatic proportional control of prehension.Med. Biol. Eng. 5: 501–511, 1967.

    Google Scholar 

  35. Scadden, L. A. A. tactual substitute for sight.New Sci, March 1969, pp. 677–678.

  36. Schlesinger, G. Der Mechanische Aufbau der Kunstlichen Glider, pt. 2. In:Ersatzglieder und Arbeitshilfen. Berlin: Springer, 1919.

    Google Scholar 

  37. Scott, R. N., R. H. Brittain, R. R. Caldwell, A. B. Cameron, and V. A. Dunfield. Sensory-feedback system compatible with myoelectric control.Med. Biol. Eng. Comput. 18: 65–69, 1980.

    CAS  PubMed  Google Scholar 

  38. Shannon, G. F., A myoelectrically-controlled prosthesis with sensory feedback.Med. Biol. Eng. Comput. 17: 73–80, 1979.

    CAS  PubMed  Google Scholar 

  39. Sheridan, T. B. and W. R. Ferrell.Man-Machine Systems: Information, Control, and Decision Models of Human Performance. Cambridge: MIT Press, 1974.

    Google Scholar 

  40. Simpson, D. C. The choice of control system for the multimovement prosthesis: Extended physiological proprioception (epp). In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 146–150.

    Google Scholar 

  41. Simpson, D. C. The functioning hand, the human advantage.J. of Royal College of Surgeons of Edinburgh, 21: 329–340, 1976.

    CAS  Google Scholar 

  42. Sorbye, R. Myoelectrically controlled hand prosthesis in children.Int. J. Rehabil. Res. I: 15–25, 1977.

    Google Scholar 

  43. Taylor, D. R., and F. R. Finley. Multiple-axis prosthesis control by muscle synergies. In:The Control of Upper-Extremity Prostheses and Orthoses, edited by P. Herberts, R. Kadefors, R. Magnusson, and I. Petersen. Springfield, Ill: Thomas, 1974, pp. 181–189.

    Google Scholar 

  44. Von Békésy, G. Sensations on the skin similar to directional hearing, beats, and harmonics of the ear.J. Acoust. Soc. Am. 29, No. 4: 489–501, April 1957.

    Google Scholar 

  45. Wiener, N.Cybernetics. Cambridge: MIT Press, 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Rehabilitation Engineering R & D Service of the U.S. Veterans Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childress, D.S. Closed-loop control in prosthetic systems: Historical perspective. Ann Biomed Eng 8, 293–303 (1980). https://doi.org/10.1007/BF02363433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363433

Keywords

Navigation