Annals of Biomedical Engineering

, Volume 11, Issue 3–4, pp 177–189 | Cite as

Intercalated discs as a cause for discontinuous propagation in cardiac muscle: A theoretical simulation

  • Pedro J. Diaz
  • Yoram Rudy
  • Robert Plonsey


A theoretical model of a cardiac muscle fiber (strand) based on core conductor principles and which includes a periodic intercalated disc structure has been developed. The model allows for examination of the mechanism of electrical propagation in cardiac muscle on a microscopic cell-to-cell level. The results of the model simulations demonstrate the discontinuous nature of electrical propagation in cardiac muscle and the inability of classical continuous cable theory to adequately describe propagation phenomena in cardiac muscle.


Cardiac electrophysiology Cable models Intercalated discs Cell-to-cell conduction Discontinuous electrical propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, L., M.M. Dewey, and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797–823, 1965.CrossRefPubMedGoogle Scholar
  2. 2.
    Beeler, G.W. and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres.J. Physiol. London 286:177–210, 1977.Google Scholar
  3. 3.
    Chapman, R.A. and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium.J. Physiol. London 283:263–281, 1978.PubMedGoogle Scholar
  4. 4.
    Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. London 255:335–346, 1976.PubMedGoogle Scholar
  5. 5.
    Crank, J. and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type.Proc. Cambridge Philos. Soc. 43:50–77, 1947.Google Scholar
  6. 6.
    Draper, M.H. and M. Mya-Tu. A comparison of the conduction velocity of cardiac tissue of various animals.Q. J. Exp. Physiol. 44:91–109, 1959.Google Scholar
  7. 7.
    Freygang, W.H. and W. Trautwein. The structural implications of the linear electrical properties of cardiac Purkinje strands.J. Gen. Physiol. 55:524–547, 1970.CrossRefPubMedGoogle Scholar
  8. 8.
    Heppner, D.B. and R. Plonsey. Simulation of electrical interaction of cardiac cells.Biophys. J. 10 1057–1075, 1970.PubMedGoogle Scholar
  9. 9.
    Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. London 117:500–544, 1952.PubMedGoogle Scholar
  10. 10.
    Hodgkin, A.L. and W.A.H. Rushton. The electrical constants of a crustacean nerve fiber.Proc. R. Soc. London, Ser. B 133:444–508, 1946.Google Scholar
  11. 11.
    Lieberman, M., T. Sawanobori, J.M. Kootsey, and E.A. Johnson. A synthetic strand of cardiac muscle: Its passive electrical properties.J. Gen. Physiol. 65:527–550, 1975.CrossRefPubMedGoogle Scholar
  12. 12.
    Lowenstein, W.R. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913, 1981.Google Scholar
  13. 13.
    McAllister, R.E., D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibers.J. Physiol. London 251:1–59, 1975.PubMedGoogle Scholar
  14. 14.
    McNutt, N.S. and R.S. Weinstein. Membrane ultrastructure at mammalian intercellular junctions.Prog. Biophys. Mol. Biol. 26:45–101, 1973.PubMedGoogle Scholar
  15. 15.
    Page, E. and L.P. McAllister. Studies on the intercalated discs of rat ventricular myocardial cells.J. Ultra. Res. 43:388–411, 1973.Google Scholar
  16. 16.
    Page, E. and Y. Shibata. Permeable junctions between cardiac cells.Ann. Rev. Physiol. 43:431–442, 1981.Google Scholar
  17. 17.
    Pollack, G.H. Intercellular coupling in the atrioventricular node and other tissues of the rabbit heart.J. Physiol. London 255:275–298, 1976.PubMedGoogle Scholar
  18. 18.
    Revel, J.P. and M.J. Karnovsky. Hexagonal arrays of subunits in intercellular junctions of the mouse heart and liver.J. Cell Biol. 12:571–588, 1962.CrossRefPubMedGoogle Scholar
  19. 19.
    Sjostrand, F.S. and E. Anderson-Cedergren. Intercalated discs of heart muscle. InThe Structure and Function of Muscle, Vol. 1, edited by G. Bourne. New York: Academic Press, 1960, pp. 421–445.Google Scholar
  20. 20.
    Spach, M.S., W.T. Miller III, D.B. Geselowitz, R.C. Barr, J.R. Sommer, and E.A. Johnson. The discontinous nature of propagation in cardiac muscle: Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.Circ. Res. 48:39–56, 1981.PubMedGoogle Scholar
  21. 21.
    Spira, A.W. The nexus in the intercalated disc of the canine heart: Quantitative data for the estimation of its resistance.J. Ultra. Res. 34:409–425, 1971.Google Scholar
  22. 22.
    Weidmann, S.. The electrical constants of Purkinje fibers.J. Physiol. London 118:348–360, 1952.PubMedGoogle Scholar
  23. 23.
    Weidmann, S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle.J. Physiol. London 187:323–342, 1966.PubMedGoogle Scholar
  24. 24.
    Woodbury, J.W. and W.E. Crill. On the problem of impulse conduction in the atrium. InNervous Inhibition, edited by L. Florey. New York: Plenum Press, 1961, pp. 24–35.Google Scholar
  25. 25.
    Woodbury, J.W. and W.E. Crill. The potential in the gap between two abutting cardiac cells.Biophys. J. 10:1076–1085, 1970.PubMedGoogle Scholar

Copyright information

© Pergamon Press Ltd 1984

Authors and Affiliations

  • Pedro J. Diaz
    • 1
  • Yoram Rudy
    • 1
  • Robert Plonsey
    • 1
  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityCleveland

Personalised recommendations